
22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 0

Introduction to Scientific ComputingIntroduction to Scientific Computing

Two-lecture series for post-graduates,
Dr. Lorena Barba

University of Bristol

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 1

What is Scientific What is Scientific ComputingComputing??

• Solution of scientific problems
using computers
– It is a multidisciplinary

activity

– “third pillar of science”
• Next to experiments

and analysis

– Now a necessary avenue for
enquiry in almost all fields of
science and engineering /

applied

mathematics

computer

science(*)

Physics, chemistry,

bio-sciences, etc.

+ engineering

(*) meaning: numerical analysis, algorithm and software development, implementation, execution, profiling, optimizing…

"Computer science is no more about computers than astronomy is about telescopes." Edsger Dijkstra.

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 2

What is it NOT?What is it NOT?

• All scientists use computers … but scientific computing is NOT:
– Word processing, type-setting (LaTeX), publication production
– Email, web browsing, file transfer (FTP, SSH), etc.
– “Everyday” apps: PowerPoint, Excel, Illustrator, Photoshop

… however essential many of these tools may be to the scientist.

• It is NOT just programming

– Workflow of computational science: sum total of all complex and
interlocking tasks from:

… to scientific discovery.

Simulation setup

input execution output visualization

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 3

Building blocks of computational scienceBuilding blocks of computational science

lay the foundations for the
mathematical description

 of the phenomena of interest

Basic Theoretical
Research

provide the mathematical algorithms,
provide the basic computer software,

cast equations into algorithms,
make efficient use of HPC

Scientific Code
Development

benchmark new software
compare results with experiments

Scientific Code
Validation

Computational Modelling
 and Simulation

HPC = High Performance Computing

Source: “Scientific Discovery through Advanced

Computing”, Office of Science, US Dept. of Energy

March 2000.

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 4

Flowchart of the process of scientific computingFlowchart of the process of scientific computing

Theoretical science
(mathematical models)

Computer science
(systems software)

Applied mathematics
(basic algorithms)

Computational science
(scientific codes)

Computational predictions

Comparison to
experiments

Performance

AgreeDisagree

PoorGood

Computational
method?

Mathematical
model?

High-performance, validated toolHigh-performance, validated tool

for scientific discoveryfor scientific discovery

Source: idem slide 3

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 5

Verification & Validation in Computational ScienceVerification & Validation in Computational Science

– In English, “verify”, “validate”, “confirm” are all synonyms

• As technical terms in CSE, they are different:

VerificationVerification solving the equations right solving the equations right

ValidationValidation solving the right equations solving the right equations

• In fact, a “code” cannot be validated, it is verified. A “calculation”
can be validated, for a specific class of problems.

• Numerical errors vs. conceptual modeling errors

– e.g. assumption of incompressibility in fluid dynamics modeling

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 6

VerificationVerification

• = “Formal proof of program correctness” [Jay, 1984; IEEE Std. Dict.]

• Verification can and should be completed without appeal to
physical experiments.

• As a code builder, I can tell you:
– What equations my code solves
– A theoretical order of convergence for my code
– The observed order of convergence for a well-behaved problem

– What grid refinement level was sufficient to attain asymptotic
performance on those well-behaved problems

• As a code user,
– Verification needs to be done again!
– … for a specific calculation.

I cannot tell you what

equations you need to
solve for your problem

I cannot tell you what grid

will be required for your

problem

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 7

• Error of the discrete solution:

– For an order-p method, and for a well-behaved problem, the error in
the solution asymptotically will be proportional to , where
is some measure of discretization (e.g., grid spacing).

– p = 2 implies a “second order” method.

• Verification of code:
– Evaluate the error using an analytic solution, or
– Perhaps use the Method of Manufactured Solutions
– Monitor the error as the “grid” is systematically refined

• Grid-refinement study, or grid convergence study.

• Asymptotic range of convergence:
should become constant

Verification: order of convergenceVerification: order of convergence

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 8

Grid convergence studyGrid convergence study

• Error:

• Neglecting h.o.t. s and taking logarithm:

– The order of convergence can be obtained from the slope of the curve
log(e) vs. log(D)

– More direct evaluation of p: from three solutions using a constant grid-
refinement ratio, r :

• Obtain the “observed order of convergence”

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 9

Verification of calculationsVerification of calculations

• Verification of calculations Error estimation.

• In order to estimate errors with a systematic grid refinement (or
coarsening), we need to know the convergence rate, p.

• Richardson extrapolation:

• The refinement does not have to be an integer:

• Fractional error on the fine grid:

Source: many papers by P. J. Roache.

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 10

ValidationValidation

• Validation has highest priority to scientists and engineers because
“nature” is the final jury.
– But experimental data is not absolute (and sometimes does not agree

with other experiments)

• Validation is ongoing (as experiments are improved, etc.)

• Careful with “false invalidation”!

“No one believes numerical results, except the author

of the calculation. Everyone believes the experimental

results, except the one who performed the experiment.

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 11

Most scientific computing deals with the same types of
problems: ordinary and partial differential equations,

systems of linear equations, vector and matrix
operations, interpolation of functions, etc.

Do not try to reinvent the wheel!

BasicsBasics of all Scientific Computing:of all Scientific Computing:

NumericalNumerical AnalysisAnalysis

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 12

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

• dot product
• cross product
• vector norm
• scalar multiplication
• sum row elements
• get maximum/minimum
• vector-matrix multiply
• matrix product
• matrix transpose
• matrix norm
• etc.

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 13

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

given

Find a reasonable function

 such that,

• Simplest: line segments

• polynomial interpolation

• Lagrange interpolation

• Chebyshev polynomials

• Rational polynomials

• Fourier interpolation

• cubic-splines

• B-splines

• surface interpolation

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 14

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

• Forward difference (FD)

• Backward difference (BD)

• Central difference (CD)

Plus, methods for higher

derivatives,mixed derivatives,

enforcing BC’s

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 15

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

• Find approximate value of

 given

• Rectangle rule

• Trapezoidal rule

• Newton-Cotes formulas

• Romberg integration

• Gauss quadrature

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 16

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

• Find a vector

so that,

where,

• Gaussian elimination:

• Pivoting

• Iterative methods: Jacobi,

Gauss-Seidel, Successive-

Over-Relaxation (SOR),

Conjugate Gradient,

and many more…

Linear systems:

 operations

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 17

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

• Discretely sampled data:

Fourier transform:

• Aliasing

• Slow FT:

• Fast FT:

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 18

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

• Find one or more solution

vectors

such that:

where,

• Newton’s method

Initial guess.

• Minimization:

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 19

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

• Forward Euler

• Backward Euler

• Trapezoidal, Crank-Nicholson

• Leapfrog (multi-step)

• Runge-Kutta schemes

• Adams-Bashford

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 20

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

• Mean, variance, skewness

• Linear correlation

• Random number generation

• Monte-Carlo

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 21

Basic numerical toolboxBasic numerical toolbox

• Vector and matrix operations

• Function interpolation

• Finite difference approximations to derivatives

• Integration of functions

• Solving systems of linear equations

• Discrete Fourier transforms

• Nonlinear equations and optimization

• Time stepping methods for ODE s.

• Stochastic tools

• Understanding errors, convergence, stability!

• Modelling

• Round-off error

• Truncation error

• Consistency

• bad initial guess!

• ill-conditioning

• bad mesh … etc.

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 22

How to learn to implement numerical methods?How to learn to implement numerical methods?

• The Bible:

http://www.nr.com/

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 23

Which programming language to use?Which programming language to use?

• C++ versus Fortran:
– C++ has attractive features for scientific computing:

• Templates for generic programming
• Operator overloading for expressiveness
• Object-orientation for abstraction and code re-use

– Why Fortran? Fortran is 30 years old!
• Advantage: lots and lots of “legacy” code

– Until the early 90s, Fortran was a lot faster for number crunching
• Benchmarks showed C++ much slower, between 20% to 10 times!

– Performance of C++ has increased markedly!
• Better optimizing C++ compilers

• New library techniques

 Really think about it before settling for good ol Fortran!

Source: “Scientific Computing: C++ versus Fortran”,

T. Veldhuizen, Dr. Dobb’s Journal (Nov. 1977)

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 24

What isWhat is Object-Orientation?Object-Orientation?

• Essential properties for object-oriented software:
1. Data encapsulation / abstraction

– Encapsulation: each object hides its internal structure from the rest of the
system. “Hiding the implementation” an object, once fully tested, is
guaranteed to work ever after.

2. Class hierarchy and inheritance
– Class: description of all properties of all objects of the same type.

Properties can be structural (static) or behavioral (dynamic).
– Static properties are described by instance variables. Dynamic properties are

described by methods.

– Inheritance: ability to derive the properties of an object from those of
another (the superclass)

3. Polymorphism
– Ability to manipulate objects from different classes, not necessarily related

by inheritance through a common set of methods.

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 25

Objects -- encapsulationObjects -- encapsulation

Data:

instance

variables

Private

Public

• the user need never peek

inside the object

• messages define the

interface to the object

OOP : code and data are merged into a single indivisible thing — an object.

Objects maintainability

Inheritance reuse

State

Behavior

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 26

Example: vectors and matricesExample: vectors and matrices

• Perhaps the most fundamental module needed by any scientific
code are classes for storing and manipulating arrays of numbers.
– Neither C nor Fortran provide good abstractions for arrays

• In C, you can t use arrays as a first-class object
• Fortran lacs the capabilities for dynamic resizing of arrays
• Neither language lets you express operations on arrays in a high-level

fashion -- you must use explicit loops to do even basic computations

– Even if you use no classes beyond a set of vector, matrix and array
types, a good array class library can make the transition from C or
Fortran worthwhile

• Polymorphism:
– a function will behave differently depending on the type of object invoking it:
– This code : w = x + y + z;

might represent summation of three vectors, or matrices, or scalars

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 27

Shortcut to numerical blissShortcut to numerical bliss

• MATLAB
– Example: solving a linear system of equations
– in MATLAB, use the backslash operator:

x = A\b;

– … and get the answer!
– … get a warning if the matrix is nearly singular
– … get a least squares solution if an exact solution does not exist

• But … for challenging real-life problems… one can quickly run out
of memory or cpu … so,

Use MATLAB for algorithm development in smaller problems,

then, once the algorithm works, translate to C/C++ with MPI

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 28

Software packages for scientificSoftware packages for scientific computingcomputing

• “Matlab is too expensive!”
– Use Octave instead … it s free!

http://www.gnu.org/software/octave/

• “Matlab is too haaaard!”
– First, read the “Help”, but if you still have troubles … ask here:

comp.soft-sys.matlab

• Other useful packages:
– Scilab: http://www.scilab.org/

comp.soft-sys.math.scilab

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 29

Before writing one line of code, find out what libraries
are available to help with your problem!

Again: don t reinvent the wheel!

Numerical LibrariesNumerical Libraries

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 30

NETLIBNETLIB

• Began in 1985 for cost-effective, timely distribution of freely available,
high-quality mathematical software.

• Collection has grown to include other software: networking tools, tools for
visualization of multi-processor performance data; technical reports and
papers, information about conferences… and more!

• http://www.netlib.org/

• Traditional numerical analysis areas:
– Linear systems, eigenvalue problems, quadrature, nonlinear equations,

differential equations, optimization

• BLAS (Basic Linear Algebra Subprograms)
– High quality "building block" routines for performing basic vector and matrix operations.

Level 1 BLAS do vector-vector operations, Level 2 BLAS do matrix-vector operations, and
Level 3 BLAS do matrix-matrix operations.

– Because the BLAS are efficient, portable, and widely available, they're commonly used in
the development of high quality linear algebra software, LINPACK and LAPACK for
example.

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 31

More numerical librariesMore numerical libraries

• ScaLAPACK
– a subset of LAPACK routines redesigned for distributed memory parallel

computers.

• ATLAS
• Automatically Tuned Linear Algebra Software

– to provide portably optimal linear algebra software. The current version
provides a complete BLAS interface for both C and Fortran77) and a very small
subset of LAPACK.

• List of free Linear Algebra software : http://tinyurl.com/jhtfm

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 32

The development of new numerical algorithms is
crucial, and leverages huge hardware investments.

Modern AlgorithmsModern Algorithms

22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 33

Top 10 Algorithms of the 20th CenturyTop 10 Algorithms of the 20th Century

• 1946: The Monte Carlo method.

• 1947: Simplex Method for Linear Programming.

• 1950: Krylov Subspace Iteration Method.

• 1951: The Decompositional Approach to Matrix Computations.

• 1957: The Fortran Compiler.

• 1959: QR Algorithm for Computing Eigenvalues.

• 1962: Quicksort Algorithms for Sorting.

• 1965: Fast Fourier Transform.

• 1977: Integer Relation Detection.

• 1987: Fast Multipole Method.
Dongarra & Sullivan, IEEE Comput. Sci. Eng., Vol. 2(1):22--23 (2000).

