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Chapter 1

Introduction

Our main objective consists of developing a spectral method for studying the evolution
of 2-D turbulent structures. We aim to obtain results similar to the ones appearing in
previous studies ([1],[2] and [8]) where cases of non-axisymmetrization were found to
evolve when a 2-D monopole is added a sufficiently strong quadrupolar perturbation
(this case is called vortez tripole or tripolar vortez).

A useful way of restating the equations for 2-D incompressible flow is obtained by
introducing the streamfunction ¢ and the vorticity w. After appropriate rearrange-
ments (see Chorin et al. [5] Ch 1.2) of the 2-D Navier-Stokes Equations, the Vorticity-
Streamfunction formulation is obtained: throughout this report (Chapter 2) we state a
Fourier method for solving it in its discretized (AB/BDI2) representation.

In Chapter 3 we describe the implementation of the spectral method within MATLAB’s
specifications; additionally we show in detail how to evaluate the Fourier coefficients of
Non-linear Terms, and we highlight initialization tips.

Chapter 4 contains the results of the computations of the tripolar vorter in a regime
specially adapted for the application of the spectral technique: as the framework has
been transformed, extra adjustments must be applied for obtaining our desired Output.

In Chapter 5 the reader can find the codes used in our computations.



Chapter 2

Spectral method for the

Vorticity-Streamfunction Equations

The advantages of using the Vorticity-Streamfunction equations include an "automatic"
divergence-free velocity field which gives us an easy-framework of less equations (for
notation convenience we will refer to these as the (w,1)-Eqgs).

Spectral Fourier methods can be applied straightforward for solving Navier-Stokes equa-
tions in this presentation, which appears useful for the simulation of 2-D 27-Periodic
Turbulent flow.

The equations for each mode are discretized with respect to time with the semi-implicit
scheme AB/BDI2, and Nonlinear Terms are calculated by means of the pseudospectral
technique free of aliasing (obtained by the "3/2" rule). We associate a first-order starting

scheme for the initialization.

2.1 Formulation

The 2-D Vorticity-Streamfunction equations are:

. 1
Ow+ B(u,w) = EAW (2.1)
w=—-Av¢ (2.2)
Where @ = (u,v) and:
u = Oyt

v = =0z
Assuming 2-D 27-periodicity in the initial conditions, the solution (w, ) has then the

same period and is sought in truncated Fourier series representation of the form:
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1 A )
Olayt) =15 D, Onm(e Gty (23)
—K<k1,k2 <K

where ¢ represents either w or 9. ( For notation convenience we will usually write
k:=Fki, ko, x:=2x,y and k1z + koy = k-x ). Equation (2.3) is discretized with respect
to time with the semi-implicit scheme AB/BDI2. This one is deduced from the general

two step scheme for the time discretization of the (w,)-Eqs:

(14 &)w™™! — 2ew™ — (1 — g)w™ !
2At

+ [713”“ +72B" + (1 = — ’Y2)Bn_1)]
1

= @A [91Wn+1 4 Go™ + (1 — 01 — Hg)w”_l] (2.4)

where w™ and B™ denote approximate values for w and B(w,) at time nAt.

Second-order accuracy requires
g/2=2y1+7—1=201+02—1

(Consistency and order of accuracy are determined by Taylor’s expansions).

In particular the semi-implicit Adams-bashfort/Backward Differentiation 27?_order scheme
is obtained with e =2, v =0, 72 = 2, 81 = 1, 62 = 0. After replacing this values into
(2.4) and applying the Galerkin technique we obtain, for each value of k,

AN AT ~n—1
3wy — 4wy + Wy

2At

- - 1
1 -1 2 ~ntl
+ 2B - B = Tk opt (2.5)
where k? := |k|? = k? + k3. Equation (2.6) is obtained evaluating equation (2.2) at time
(n+1)At.

In the next section we will see how to calculate BQ, the Fourier coefficient of @ - Vw by

means of the pseudospectral technique free of aliasing, using the values of wy! and zﬁﬁ

The Fourier coefficients (ﬂﬁ“, @ﬁ“) of the velocity are,

= ipy gyt (2.7)

gt = —ipPptt (2.8)

and for the gradient of the vorticity,
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Oy gt =iqogt!
y&‘)gfi’l — qu &‘)grf*l
Given initial conditions w(0) and 1(0) we put,
~0 oA
@y = @y (0)
40 .
K = i (0)

2.1.1 Starting Scheme

(2.9)
(2.10)

The starting scheme can be one-order accuracy less than the general scheme, who in this

case is of 2"%-order: in fact, it has been shown (Gear,1971) that the approximation error
O(At*) becomes O(AtF*!) when t = mAt, with m << 1. Consequently, it is sufficient

to associate a 15%-order starting scheme for equation (2.5).

Suppose that we know @10{ and @ﬁ (we will see in the next section how to obtain Bﬂ from

this values). Now observe that when n = 0 we are in lack the values of @, 1 and 1[11: !

in order to find d)ll{ and 1[111( for moving to the next time-step. For this reason we pose

d)l:l =P and 12)1:1 = 12)12 (which makes Blzl = Bﬂ)

We have then, for each k,

“1 A0

W =Wk | A0 1 s
B = —k

%At k Re

(2.11)

(2.12)



Chapter 3
Implementation

Some inconveniences arise when implementing the method for the (w,%)-Eqs in the
computer.

Changing - for good theoretical reasons- a little bit discretization (2.3), we will satisfy
MATLAB’s specifications for storing wavenumbers when using the FFT2 algorithm.
Instead of evaluating B through convolution sums (which would be too expensive!),
we invoke the power of the FFT2 algorithm to move back and forth from Fourier to
Physical space, performing operations in the second rather than the first. Although in
this process "alias" terms appear; this can happily be fixed through the elegant and

quick application of the "3/2" rule when using this pseudospectral technique.

3.1 The FFT2 and iFFT2 Algorithms

Our basic periodic grid will be a discrete subset of [0,27] x [0, 27]. Specifically we use

equally spaced grid points:

2wy 271y
o= ) =Ny

where 4,5 € 1,...,N and N = 0(mod4). The interspacing is h := %ﬂ
Expansion (2.3) must satisfy, for fixed ¢,

oxnt) =75 Y, dulert (3.1)
The coefficients qgk(t) are determined using the orthogonality relation,

A , L ifk—1=mN, meZ, (OR)

h2
—1 0  in the other cases.
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where 1 := (ll, l2), the greek letter ¢ stands for the pair ¢, j, and the expression

k — 1 = mN stands for the equality k —1 = mN(1,1) (we will often abuse of this
notation!).

Multiplying (3.1) by €721* and adding from ¢ = 1,..., N we obtain,

N
Ge(t) =1 p(x,t)etE* for —K <k <K (3.2)
=1

Observe that if k, — kg =0 (mod 2%) then
ejka-xb _ eikﬁ'XLGQﬂ'Zé‘/\ _ e;’kg-xL

where 6, A € Z2. In words, this means that wavenumbers differing by an integer multiple
of 27 /h are equal on the grid. We conclude that it is senseless to use values of k outside

of an interval of size 2r/h. Specifically we imply k € (-7, %}2 i.e.,

kiky € {~N/2+1,-N/2+2,...,0,1,...,N/2}

Therefore from now on we will have K = N/2 and the range of the wavenumbers in the
expressions (2.3), (3.1) and (3.2) will be modified. These three equations will be replaced
respectively by,

1 n i kx
p(x,t) = yrs) Z P()ers (TFS)
~K+1<k<K
1 2 i kex .
P(x,t) = P} Z P (t)er (iDFT2)
~K+1<k<K
~ N .
Oe(t) =0* ) d(x,,t)e kX for —K+1<k <K (DFT2)
=1

In doing this we are standarizing our problem for MATLAB’s specifications: expre-
ssions iDFT2 and DFT2 are calculated via the iFFT2 and FFT2 algorithms (when N
is a product of small prime factors these algorithms require O(N log N) operations).
MATLAB’s FFT2 algorithm receives as an entry an N X N matrix of real numbers
(A) representing a plotting grid, and returns an N x N matrix of Fourier coefficients
A= {ak, ko }, where k1 and ko are stored in the order 0,1,...,N/2,—-N/2+1,...,—1.
The iFFT2 just works in the opposite way.

Observe that some trouble arises with the modes ¢2 K ky and qg K.k, In fact the terms,

s
Dy € (Kt

(Z)k Kei (k1I+Ky)
1,
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cannot be associated with their analog

QZA)—K ko ei (—Kz+kay)

Qf;kl _Kei (k1z—Ky)

This leads to instabilities in the time-dependent problem. For handling it, we just set
these terms equal to 0 whenever they appear during the implementation of the FFT2

algorithm.

3.2 Calculation of Nonlinear Terms

In this section we show how to efficiently evaluate the nonlinear term B{{L through the
application of the Pseudospectral Technique Free of Aliasing. This technique was de-
veloped independently by Orszag (1969, 1970, 1971) and Eliasen, Machenhauer and Ras-
mussen (1970).

3.2.1 The Pseudospectral Technique

Let
—_— n
SN . T RN
By = [u@ww + vﬁyw]k = E Up 0wy + E Op0ywy (3.3)
p+q=k p+q=k
—K+1<p,q<K —K+1<p,q<K

for —K +1 < k < K. A direct calculation of (3.3) takes O(N3) operations. In
the absence of another tool to perform this computation, spectral methods would be
too expensive given the fact that calculation of 2-D non-linear terms through finite
difference algorithms take O(N?) operations. However, the pesudospectral technique
requires O(N? log N) operations (although some corrections have to be applied for its
application in order to remove the aliasing error).

We will illustrate the technique’s application on a generic 2-D convolution sum of the

type,

& = Y aphy for —K+1<k <K (3.4)

P aq
p+a=k
—-K+1<p,q<K

Consider the matrices ¢ := {ék}, a:= {&p} and b := {Bq}, organized within MATLAB’s
specifications for the application of the FF'T2 algorithm.

We use the iFFT2 algorithm to transform a and b to the 2-D plotting grid (i.e. the
physical space) perform a "multiplication" and then applying the FFT2 we determine

C, an approximate value for matrix ¢.
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Algorithm 3.2.1.
i) Start with calculating a := iFFT2 () and b := iFFT2(b).
ii) Let C := a. * b (element-wise multiplication).

iii) Finish with C := FFT2(C).

Due to the aliasing phenomenon, matrix C is different from matrix é. In fact, using
(OR) we have,

=h? Z ( Z &pei p-xb> ( Z qui q-xb> e—ikx
-K

—K+1<q<K

N

Il
=
&)
Q>
T
S
e}
®.
)
+
7
=z
¥

N
= h? apby Y ex (pra—k)«

Il
>
ke]
>
o]
+
>
>
o]

P
p+a=k p+q=k+N
—K+1<p,q<K —K+1<p,q<K

=& + > apby for —K+1<k <K (3.5)

p’q
p+a=k+N
—K+1<p,q<K

Now we can clearly see the aliasing error! We conclude that evaluation of the convolution
C through Algorithm (3.2.1) is not at all correct. Modifying it we will eliminate the

alias terms achieving our final goal!
3.2.2 The "3/2" Rule

Aliasing removal is performed using the "3/2" rule. Orszag (1971) was the first to
consider this computationally inexpensive method: its principle consists of eztending
matrices & and b before applying 3.2.1, and then eztract a submatrix of the Quitput who

would be our desired convolution sum ¢. The details can be found in the following,
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Algorithm 3.2.2 (PTFA).
i) Let K’ :=3K/2.

ii) Extend matrices a,b into @', b following the rule:

10

) dp17p2 if _K+1Sp17p2 SKa
a =

i 0 if —K'+1<p, <K, or K< p, <K' forsome req{l,?2}
b= BQLQQ if —K+1<q,¢2 <K,

4 0 if —K'+1<¢qs <K, or K< qs <K' forsome se€{l,2}

iii) Compute a’ := iFFT2(a') and b’ := iFFT2(t').

iv) Let C':=ad’. x V.

v) Find C’ := FFT2(C’). The result is a square matrix of size 2K’.
vi) Extract the submatrix é of size 2K, from C’, following the rule:

ék:{é,;m if —K+1< kiky <K

Proposition 3.2.3. Matriz ¢ corresponds to the desired convolution sum (3.4).

Proof. Define N' := 2K’.

In a similar way as we obtained (3.5), we find:

Co= >, aphy+ > aphy for —K+1<k <K
pt+a=k p+q=k+N’
—-K'+1<p,q<K’ -K'+1<p,q<K’

Step ii) from Algorithm PTFA indicates how (3.6) can be replaced by:

Ch=tdct Y. apby+ > b, for —K+1<k <K
p+a=k+N’ p+q=k-N’
—K+1<p,q<K —K+1<p,q<K
The alias terms in equation (3.7) are 0. In fact,
q=2K'+k—-p=3K+k—-p
>3K-K+1-K
> K

in the second sum. In the third one we have:

q=—2K'+k-p=-3K+k—-p
< 3K+K+K-1=-K-1
<-K+1

(3.7)
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3.3 Initialization

Discretization (2.11) requires the values of:

B = { By}
—K+1<k<K
For finding them we need the values of:
~0 . [~0 0. [0
Y {wk}—KHgkgK v {qﬂk}fKJrlSkSK

The value of &° is found by computing FFT2(w?), where w° := {wo(xb)} .
1=1,...,

Furthermore, using relation (2.12), &ﬁ can be found for every k except for k = 0.
Fortunatelly we do not require the missing Fourier coefficient! In fact, in order to find

B° we will apply Algorithm PTFA using the matrices,

.0 { 20 -0 !
U = {ip2 } 0 = {—wlw }
¥p ~K4+1<p<K PJ) _K+1<p<k

with the first column (respectively row) of null entries.
As we can observe in discretization (2.6) the issue concerning the missing Fourier coef-
ficient of ¢ will repeat for the next time steps as well. As above, we do not require the

missing term for computing B" .= {Eﬁ}—K+1<k<K



Chapter 4

Computations of a Perturbed

Monopole with a Tripole Attractor

In this chapter we use the method for the Vorticity-Streamfunction equations for simula-
ting the evolution of the vortex tripole. In this particular case the Output gives evidence
of how evolution of 2-D turbulence does not always approach axisymmetrization (which
was initially proposed as one of the universal processes of relaxation). In fact, the pre-
sence of non-linear interactions may be an important cause of re-organization into other
ensembles, such as the tripolar vortex.

This situation has already been studied by Barba [1] [2] using mesh-less vortex methods,
and by Rossi et al. [8] by means of viscous methods based on core spreading and vor-
tex particle splitting: is was highlighted how under small-amplitude non-axisymmetric
perturbations, the flow relaxes to an axisymmetric state, but for sufficiently large am-
plitudes it reorganizes into a quasi-steady, rotating vortex tripole.

For the implementation of the Fourier method we must rescale and shift the initial con-
ditions in order to satisfy the periodicity assumption made. Furthermore, this changes

will force us to change all the framework!

4.1 Rescaling and Shifting

Initial conditions for previous studies have been composed of a Gaussian vortex with a

superposed quadrupolar perturbation wp(x) + w’'(x), with

1
wo(x) = Ee—lx\z/‘* (4.1)
J 2
'(x) = — e XP/4 cog
w'(x) 4776 cos mb (4.2)

where wp and w’ are the base and perturbation vorticity respectively and 6 := arg(x).
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Barba [1],[2] and Rossi [8] performed numerical simulations with different values for the
parameters: taking 6 = 0.25 and Re = 10%, where Re = I'/v (total circulation divided
by the viscosity), the initial state re-organizes to a quasi-steady structure composed of
one core of positive vorticity, and two satellites of negative vorticity

Observe that the method for the (w,1)-Eqgs as described in Chapter 3 is sought for a 27
periodic flow defined on [0, 27] x [0,27]. The method can also be applied to flows who
satisfy the no-slip condition, i.e. such that the velocity of the particles approaches 0 in
the boundary. For satisfying this we must rescale and shift initial conditions (4.1) and

(4.2). This is easily made through a change of variables:

x = ¢p(x) := C(x — xq) (4.3)

where C' > 3. The initial conditions are then replaced by wp(¢(x)) and &' (p(x)).

4.2 A New Framework

The process of adaptation described in Section 4.1 affects the initial conditions of the
vortex tripole. In fact, whereas shifting would not be an important factor in the evolu-
tionary feature, rescalling reduces the size of our framework. Therefore, for expecting
similar outcomes as the ones depicted in [1],[2] and [8], we must apply some adjustments:
we use Cuwp(p(x)) and Cw'(p(x)), increasing by a factor of C' the initial vorticity.

A simulation was performed with values of 6 = 0.5 and Re = 10%. The method for the
(w,)-Eqgs was implemented with 2-D plotting grids of 108 points, i.e. with N = 103,
The time-step used was At = 0.1 and At; = 1078 for the initial time-step.

As observed in the cited previous works, the perturbed monopole relaxes to a non-
axisymmetric state. A simultaneous process of counter-clockwise rotation of the negative
"blobs" and shearing of the positive core takes place. It is surprising how the satellites

are almost intact after the evolution occurs!
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Figurel. Perturbed monopole relaxing to a tripole attractor. The strength of the
perturbation is 6 = 0.5 and the Reynolds number is Re = 10%.
Here we observe the sequence ¢t = 0,100,...,800. Color-ranges for the vorticity start

from black (negative), blue (zero), to intense red (positive).



Chapter 5
Programs

The following codes have been implemented in MATLAB: the main one computes the
starting scheme described in Section 2.1.1 using initial conditions (4.1) and (4.2) with
the arrangements described in Section 4.2; additionally it evaluates the subsequent
steps of discretization (2.5) and plots the sequential "frames" of the evolution.

A code for calculating non-linear terms through the PTFA was written; it uses two

sub-functions for eztending and extracting spectra.

5.1 Main Code
%%h%% SPECTRAL METHOD FOR THE VORTEX TRIPOLE

%%%%% ASSIGNING THE GRID AND THE STARTING CONDITIONS FOR THE
%hh%% VORTEX TRIPOLE

clear all;
clf ;

% Functions
Nonlinear = Q@PTFA;

% Parameter Space

C = 3;
delta = 0.5;
dt = 0.1 ;

t =800 ; n=1t/dt ; % time-intervals
N = 1000; % N=0(mod 4)
Re = 1le4;
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N/2;

m= 2;

% Helping Matrices
L1 = repmat( [ 0:K -K+1:-1 ] , 2xK , 1) ;
normksq = L1.72 + L1°.72 ;

% Little Filter for normksq
normksq2 = normksq ;
normksq2(1,1) =1 ;

% Grid and initial conditions
[X,Y] = meshgrid( 2#pi/N : 2%pi/N : 2%pi , 2*pi : -2%pi/N : 2*pi/N );
[THETA,RHO] = cart2pol( C*( X-pi ) , Cx( Y-pi ) ); % reescaling the grid

Omega_ini = ( 1 / ( 4*pi ) J)=*exp( -( RHO."2 )./ (4) );
Omega_pert = ( delta )#*Omega_ini.*( RHO."2 ).*cos( m+*THETA );

Omega_0 = C*( Omega_ini + Omega_pert ) ;

% Plotting the initial condition

subplot(3,3,1)

surf( X, Y, Omega_0, ’EdgeColor’, ’none’, ’Facelighting’, ’phong’ );
view( [0 90] )

axis off, axis square

%hthh STEP 1

Omegac_0 = fft2( Omega_0 ) ;

% K+1 mode filters

Omegac_O( K+1 , : ) 0 ;
Omegac_O0( : , K+1 ) 0 ;

% Initial Stream Function’s transform

Psic_0 = ( Omegac_0 ) ./ normksq2 ;

% Initial nonlinear term: matrix of 2D Fourier Components of

% -psi_y*w_x + psi_x*w_y ;



§5.1 17

BNLc_0 = Nonlinear( 1ixL1.#Psic_0 , 1i*L1’.*Omegac_0 , K ) +
Nonlinear( -1i#L1’.*Psic_0 , 1ixL1l.*Omegac_O0 , K ) ;

h = 1e-8 ; ¥ h<<1l for the initial step
dt_0 = (2/3)*hxdt ;

% Evaluation
Omegac_1 = ( Omegac_0-dt_O*(BNLc_0) ) ./ ( 1 + (dt_O/Re)*normksq ) ;

Psic_1 = Omegac_1./ normksq2 ;

%%%% SUBSEQUENT STEPS

Omegac_nback = Omegac_0 ;
Psic_nback = Psic_0O ;
BNLc_nback = BNLc_O ;
Omegac_n = Omegac_1 ;

Psic_n = Psic_1 ;

for j = 2:n
% Nonlinear terms
BNLc_n = Nonlinear( 1i*L1.*Psic_n , 1i*L1’>.*0Omegac_n , K ) +

Nonlinear( -1i*L1’.#Psic_n 1i*L1.*Omegac_n , K ) ;

% Evaluation
Omegac_nfront = ( 4*Omegac_n - Omegac_nback - 2*dt*( 2*BNLc_n - BNLc_nback ) )
./ (3 + ( 2«dt/Re )#*normksq ) ;

Psic_nfront = ( Omegac_nfront )./ normksq2 ;

% Assignation for the next step
Omegac_nback = Omegac_n ;
Psic_nback = Psic_n ;
BNLc_nback = BNLc_n

Omegac_n = Omegac_nfront ;

Psic_n = Psic_nfront ;

% Plotting Sequentially
if mod( j*dt,100 ) ==
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subplot( 3 , 3 , ( ( j*xdt )/100 ) + 1 ,’v6?)
Omega_fin = real( ifft2(Omegac_n) );
surf( X, Y, Omega_fin, ’EdgeColor’, ’none’, ’Facelighting’, ’phong’ );
view( [0 90] )
axis off, axis square
end
end
%h% END OF PROGRAM

5.2 PTFA

% Function for calculating the PseudoSpectral Technique free

% of Aliasing (using the "3/2" rule)

function Cc = PTFA(Ac, Bc, K)

Kp = 3%K/2; grow=QGROW; shrink=@SHRINK;
% 1.Extend the matrices Ac and Bc into the matrices Acp, Bcp

Acp = grow(Ac, K); Bcp = grow(Bc, K);

% 2.Calculate a(xp_i, yp_j), b(xp_i, yp_j) i,j 1,....,2Kp=Np
Ap = ifft2(Acp); Bp = ifft2(Bcp);

% 3. Multiply Ap and Bp pointwise
Cp = Ap.*Bp;

% 4. Calculate the Fourier Coefficients
Cvp = ££t2(Cp);

% 5. Shrink for obtaining the desired Fourier Coefficients
yA free of aliasing
Cc = shrink(Cvp, K);

% 6. Apply Filters
Cc(K+1,:) =0 ;
Cc(:,K+1) = 0 ;
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5.2.1 Extending with GROW

% Function for Expanding Xc into Xcp

function Xcp = GROW(Xc,K)

Kp = 3%K/2;

% Copying

X11 = Xc(1:K+1 , 1:K+1);

X12 = Xc(1:K+1 , K+2:2%K);
X21 = Xc(K+2:2%K , 1:K+1);
X22 = Xc(K+2:2%K , K+2:2%K);

% Extending

H1 = zeros(K+1, 2*(Kp-K)) ; H2 = zeros(2x(Kp-K),2*Kp);
H3 = zeros(K-1, 2*(Xp-K)) ;

Xcp = [X11 H1 X12; H2; X21 H3 X22];

5.2.2 FExtracting with SHRINK

% Function for shrinking Xcp into Xc

function Xc = SHRINK(Xcp,K)

Kp = 3%K/2;

% Copying
X11 = Xep(1:K+1 , 1:K+1);

X12 = Xcp(L:K+1 , 2%Kp-K+2:2%Kp);
X21 = Xcp(2*%Kp-K+2:2%Kp , 1:K+1);
X22 = Xcp(2*Kp-K+2:2+Kp, 2*Kp-K+2:2*Kp);

% Extracting
Xc = [X11 X12; X21 X22];

19



Bibliography

1]

2]

3]

L.A. Barba, Vortex method for computing high Reynolds number flows: increased
accuracy with a fully mesh-less formulation, PhD Thesis, Caltech, 2004.

L.A. Barba, Nonshielded multipolar vortices at high Reynolds number, Physical Re-
view E 73, 065303, The American Physical Society, 2006.

G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press
1967.

C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid
Dynamics, Springer-Verlag, New York, 1988.

A. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Dynamics, Univer-
sitext, Springer-Verlag, New York, 1979,1990,1994.

Desmond J. Higham, Nicholas J. Higham, Matlab Guide, STAM, 2005.

Roger Peyret, Spectral Methods for Incompressible Viscous Flow, Springer-Verlag,
New York, 2002.

Louis F. Rossi, Joseph F. Lingevitch, Andrew J. Bernoff, Quasi-steady monopole
and tripole attractors for relazing vortices, Phys. Fluids 9 (8), American Institute
of Physics, August 1997.

Lloyd N.Trefethen, Spectral Methods in Matlab, STAM, 2000.



