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Abstract

Radial Basis Functions (RBF) are well-known as powerful tools for multivariate interpolation from scattered
data. Just very recently, RBFs have gained enormous popularity in mesh-free methods for Partial Differential
Equations (PDEs). First known applications of RBFs in Computational Fluid Dynamics (CFD) are those from
Edward Kansa in 1990, and nowadays this technique has been succesfully used in several practical problems.
Various authors have been proved that the Multiquadric (MQ) kernel enjoy exponential convergence. On the
other hand, the primary disadvantage of the direct MQ-RBF scheme is that it is global, hence the coefficient
matrices obtained from this discretization scheme become full and progressively more ill-conditioned as the
rank increases. The ill-conditioning problem has been addressed in various works and there exist several
ways to improve the condition number of the coefficient matrices. The techniques include the construction of
special preconditioners and the use of Domain Decomposition methods (DD). In this work, the unsymmetric
collocation RBF mesh-less method is used to solve typical CFD benchmarks and the principal characteristics
of MQ-RBF are studied. To this end, a framework using the Object-Oriented Paradigm (OOP) in combination
with the C++ language was constructed. Currently this tool contains classes for generation of points in simple
geometries, Thin-Plate Splines (TPS) and MQ RBF kernels, GMRES and Gauss elimination solvers, ACBF
preconditioner, KDTree algorithm and classes for solving problems with the alternating Schwartz domain
decomposition method in multiprocessor architectures via the use of the MPI library. Solution of Poisson
equation, advection-diffusion in 1D and 2D, and incompressible viscous flows problems are presented.
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1 Introduction

CFD is the analysis of systems involving fluid flow, heat transfer and asssociated phenomena such as chemical
reactions by means of computer-based simulation. CFD codes are structured around the numerical algorithms
that can tackle fluid flow problems. A typical CFD modelling involves three principal steps: (1) Theoretical
Model, where physical laws are applied to describe the studied phenomenon in terms of a set of mathematical
equations, (2) Discrete Model, where the equations are written in terms of simple algebraic operations and (3)
Solution of the resultant linear systems.

In the second step of this process it is required to decide the manner in which the governing equations
will be discretized in order to obtain approximated solutions. In the past four decades numerical simulation
in CFD has been dominated by either finite difference methods (FDM), finite element methods (FEM), and
finite volume methods (FVM), which require a mesh to support the localized approximations. Typically, the
simulations are done in complicated two and three-dimensional geometries, in such a way that the construction
of a mesh in these domains is a non-trivial problem, and more than the 70% of overall computation is spent
by mesh generators.

In the last decade, the so-called meshless methods for PDEs has been intensely studied because its ability of
dealing with PDEs in complex domains without a mesh at all. The popular meshless methods include moving
least square method [1, 2], generalized finite element method [3] and radial basis function (RBF) [4, 5, 6].

In 1982 Franke [7] compared 29 interpolation methods with analytic two-dimensional test functions. Accord-
ingly, one of the most powerful methods is the continuously differentiable multiquadric MQ-RBF, discovered by
Hardy [8, 9]. The MQ-RBF for the interpolation problem has been shown by various authors to possess some
very powerful properties. Madych and Nelson [10] proved that interpolation with the MQ-RBF is exponentially
convergent.

In 1990, Kansa [4, 5] modified Hardys MQ method [9] to solve partial differential equations. Since then,
solving PDEs using RBFs has been used for different sort of applications. Fedoseyev et al. [11] demonstrated
that the solutions of elliptic PDEs converge exponentially requiring orders of magnitude less points and opera-
tions than FDM, FEM and FVM. The main advantages of the MQ-RBF scheme over the traditional methods
are that enjoys superior convergence rates, requires less points and is easy to implement in more than one
dimensions. On the other side, the principal disadvantage of applying MQ-RBFs to PDE systems is that the
resulting coefficient matrix can become quite ill-conditioned as N , the rank of the matrix, increases.

The cost of increasing the accuracy via RBF is usually the ill-conditioning of the associated linear systems
that need to be solved: better conditioning is associated with poorer accuracy and worse condition-

ing is associated with improved accuracy. Different approaches have already been proposed to overcome
the difficulties, see for example [12, 13, 14, 15, 16, 17, 18, 19]. In these works several ideas are proposed:

• Domain Decomposition Methods (DDMs).

• Use of Krylov solvers (CG, GMRES, etc.) in conjunction with simple and specialized preconditioners.

• Use of a variable shape parameter as a function of the local radius of curvature.

• Use of truncated MQ basis function.

• Optimization of knots distribution.

• Multilevel approximation schemes developed by Fasshauer and Jerome [20], to keep the band-width
constant, but refine spatial regions to the desired degree of accuracy.

Particularly, in [14] and [19] two specialized preconditioners for improving the condition number of the
matrices are studied. In these two works a preconditioner is constructed using Approximated Cardinal Basis
Functions (ACBF). Brown et al. [21] compares both preconditioners and found that the LS-ACBF from [19]
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is relatively easy to setup and performs better for very bad conditioned matrices. Also it works better for
time-dependent problems. The comparison were made in terms of GMRES iterations.

Tipically, when MQ-RBF is applied to solve PDEs using the method from [5], we found that the error is
largest near the boundary, by one or two orders of magnitude than those in the domain far from the boundary.
A method that improves the error near the boundary is proposed in [11], resulting in a better global accuracy.
The main idea is to add an aditional set of points adjacent to the boundary (inside or outside) and, an additional
set of collocations equations obtained via collocation of the PDE on the boundary. Adding nodes near the
boundary may give rise to troublesome issues and the solution depends on the distribution of this additional set
of points. Similarly, when Neumann boundary conditions are imposed the accuracy is poorer compared with
pure Dirichlet boundary conditions. In [22] is observed that one solution to this problem is either by refining
the mesh size (h-scheme), or by increasing the shape parameter (c-scheme). Both schemes significantly increase
the ill-conditioning of the matrices that causes instabilities in the solution. To mitigate the ill-conditioning, an
improved truncated singular value decomposition method can be used to solve the systems.

RBF mesh-less methods are recent techniques to deal with PDEs, and the typical tools for testing these
new methods is by implementing the algorithms inside high-level frameworks like Mathlab. However, this kind
of frameworks are not intended for High-Performance Computing (HPC). The main objetive in this work is
to construct a framework using the C++ language in order to provide the tools for an easy developing and
testing of the RBF techniques, allowing to run the codes on HPC plataforms. The C++ language was selected
because it is possible to construct good and efficient object-oriented code. In general OO designs allows better
encapsulation and separation of concerns, thus providing a high degree of modularity and flexibility and greatly
increase the potential for reuse of single systems components [23]. The fact that OOP provides these tools is
not enough to obtain good quality software, it is also necessary to use a software development process that
guides the analysis, design and implemention of the different parts of the code. A simplified software process
specially adapted for scientific computing simulations, and based on the Unified Process of Development [24]
is used here. To test and calibrate the tools, a set of unit tests were defined, and these are PDEs equations
coming from CFD benchmarks. Fortran and C libraries exist that provide good performance, so the idea here
is not to redo those libraries. Instead, C++ wrappers are used to link with existent high-performance libraries.
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2 Radial Basis Functions Meshless Method

The motivation for RBF was originated from applications in geodesy, geophysics, mapping, or meteorology.
Later, applications were found in many areas such as in the numerical solution of PDEs, artificial intelligence,
learning theory, neural networks, signal processing, sampling theory, statistics, finance, and optimization. It
should be pointed out that meshfree local regression methods have been used independently in statistics for
more than 100 years, see for example [25] and references therein. Recently, RBFs have been applied in solving
PDEs. The theory includes Galerkin methods [26], collocation methods [27, 28], and multilevel schemes [29].

In this section the RBFs methodology for interpolation of scattered data and for solving PDEs is introduced
briefly.

2.1 RBF definition

A radial function is defined as:

Φ : R
d → R : (~x)→ φ(||~x||) (1)

for some univariate function φ : [0,∞) → R, where ~x ∈ R
d, and || · || is the usual Euclidean norm of ~x =

(x1, . . . , xd) and is defined as:

||~x|| =

√

√

√

√

d
∑

i=1

x2
i (2)

The equation (1) says that the function value of Φ(x), only depends on the norm of ~x, therefore we have
a radial function. If || ~x1|| = || ~x2|| then Φ( ~x1) = Φ( ~x2), for ~x1, ~x2 ∈ R

d. A useful feature of radial functions is
the fact that the interpolation problem becomes insensitive to the dimension d of the space. Instead of having
to deal with a multivariate function Φ (whose complexity will increase with the space dimension) it is possible
to work with the same univariate function φ for all choices of d.

Suppose now, we have a set of points fixed (sometimes called centers) {~xj}Nj=1 = {~x1, . . . , ~xN} ⊂ R
d and

consider the following linear combination of the function Φ centered at the points ~xj :

ũ(~x) =
N
∑

j=1

λjΦ(~x− ~xj) =
N
∑

j=1

λjφ(||~x − ~xj ||) =
N
∑

j=1

λjφ(r) (3)

where r = ||~x − ~xj || is the Euclidean distance between the points ~x and ~xj and {λj}Nj=1 represent a set of
unknown coefficients. The function φ is the so-called Radial Basis Function, and ũ is the interpolant that
approximates the function u in a given domain.

There are several possible choices for the RBF kernel φ, the table 1 lists the most widely used RBF. The
parameter c that appears in several of the RBF kernels is known as the shape parameter. Note that the radial
basis functions φ can be either globally supported or compactly supported.

In the case of the CS-RBF, ρ represents the radius of support whose magnitudes affects the accuracy of the
approximation. The notation + is defined as:

(

1− r

ρ

)4

+

=











(

1− r
ρ

)4

if 0 ≤ r
ρ ≤ 1,

0 if r
ρ < 1.

(4)

More details about RBF can be found in [6, 30, 31].
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RBF Definition

Multiquadric (MQ) φ(r, c) = (r2 + c2)β/2, β = 1, 3, 5, . . . , 2N + 1, . . .

Inverse Multiquadric (IMQ) φ(r, c) = (r2 + c2)−β/2, β = 1, 3, 5, . . . , 2N + 1, . . .
Gaussian (GA) φ(r, c) = exp{−c2r2}
Thin-Plate Splines (TPS) φ(r) = rβ log(r), β = 2, 4, 6, . . . , 2N, . . .
Smooth Splines (SS) φ(r) = rβ , β = 1, 3, 5, . . . , 2N + 1, . . .

Compactly Supported RBFs (CS-RBF)
(

1− r
ρ

)4

+

(

1 + 4 rρ

)

, d ≤ 3

Table 1: Global Radial Basis Functions.

2.2 Interpolation with RBF

Radial Basis Functions can be used to intepolate scattered data to any point inside the domain of interest.
Suppose we know the values of the function u : R

d → R at a set of N fixed points X = {~xj}Nj=1 ⊂ R
d. Then a

RBF basically defines a spatial mapping which maps any location ~x ∈ R
d to a value ũ(~x) represented by:

ũ(~x) =

N
∑

j=1

λjφ(||~x − ~xj ||). (5)

In order to find the coefficients λj , we write the above equation for all fixed points where the value of u(~xi)
is known, that is:

u(~xi) = ui =

N
∑

j=1

λjφj(ri), for i = 1, . . . , N, (6)

where φj(ri) = φ(||~xi − ~xj ||) and ri = ||~xi − ~xj || is the distance between ~xi and ~xj . This equation can be
written in matrix form as follows:











φ1(r1) φ2(r1) . . . φN (r1)
φ1(r2) φ2(r2) . . . φN (r2)

...
...

. . .
...

φ1(rN ) φ2(rN ) . . . φN (rN )





















λ1

λ2

...
λN











=











u1

u2

...
uN











(7)

Observe that the above system is completely full and the terms φj(ri) for i = j could be equal to zero
depending on the RBF chosen.

2.3 Solving PDEs with RBFs

The first attempts to solve PDEs with RBF techniques where taken by Kansa [4, 5] in 1990. Since then, several
studies have been conducted to investigate the applicability of this method to numerically approximate the
solution of PDEs coming from several fields of study. In constrast to standard numerical methods like Finite
Differences, Finite Volume or Finite Element, in RBF techniques the differential operators of a PDE are never
discretized, instead each operator is applied to the basis function directly.

Consider the following general form of a boundary value problem:

Lu(~x) = f(~x) in Ω ∈ R
d (8)

Bu(~x) = h(~x) on ∂Ω,

where ~x ∈ Ω, L and B are arbitrary differential operators in the domain Ω and on the boundary ∂Ω, respectively.
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Assume there exist N total collocation points X = {~xj}Nj=1 ∈ Ω̄, where Ω̄ = Ω ∪ ∂Ω is known as the
closure of the domain. Define NI as the number of interior points in Ω and NB as the number of points on
the boundary ∂Ω, in such a way that N = NI +NB. By substituting equation (6) into (8) the boundary value
problem can be written as follows:

N
∑

j=1

λjLφj(~xi) = f(~xi) = fi, for i = 1, . . . , NI (9)

N
∑

j=1

λjBφj(~xi) = h(~xi) = hi, for i = NI + 1, . . . , N.

To find the λj coefficients it is necessary to solve the next N ×N linear algebraic system:





















Lφ1(r1) . . . LφNI
(r1) LφNI+1(r1) . . . LφN (r1)

...
. . .

...
...

. . .
...

Lφ1(rNI
) . . . LφNI

(rNI
) LφNI+1(rNI

) . . . LφN (rNI
)

Bφ1(rNI+1) . . . BφNI
(rNI+1) BφNI+1(rNI+1) . . . BφN (rNI+1)

...
. . .

...
...

. . .
...

Bφ1(rN ) . . . BφNI(rN ) BφNI+1(rN ) . . . BφN(rN )









































λ1

...
λNI

λNI+1

...
λN





















=





















f1
...
fNI

hNI+1

...
hN





















(10)

Defining sub-matrices WL11, WL12, WB21 and WB22

WL11 with elements Lφj(ri), for i, j = 1, . . . , NI ,
WL12 with elements Lφj(ri), for i = 1, . . . , NI , j = NI + 1, . . . , N ,
WB21 with elements Bφj(ri), for i = NI + 1, . . . , N , j = 1, . . . , NI ,
WB22 with elements Bφj(ri), for i = NI + 1, . . . , N , j = NI + 1, . . . , N ,

and the vectors Λ = [λ1, . . . , λN )]T , F = [f1, . . . , fNI
]T and H = [hN+1, . . . , gN ]T , the system (10) can be

written as follows:

G =

[

WL11 WL12

WB21 WB22

]

Λ =

[

F
H

]

(11)

where G is known as the Gramm’s Matrix.
The solution of system (11) give us the coefficients λj that are required to approximate u by using (5). In

principle, with this technique it is possible to find the value of u in any location inside the domain Ω.
As can be observed, the collocation method with RBFs is very simple and truly mesh-less method. Also

it can be applied directly to one, two, three or more dimensions. On the other side, the matrix of the system
result fully populated (except for the CS-RBFs), unsymmetrical and in the mostly of the cases ill-conditioned.
Several authors had been addressed the ill-conditioning problem, see for example [14, 15, 16, 18, 19]. To solve
this kind of linear systems it is possible to use Gauss elimination with partial pivoting or iterative methods
like GMRES. However, Gauss elimination require O(N3) and is very expensive for many collocation points.
Iterative algorithms, as in the case of GMRES, require specialized preconditioners in order to reduce the number
of iterations in generating approximated solutions in short times.

2.3.1 Polynomial precision

Sometimes the approximation given in the RBF expansion presented in equation (6) is extended by adding a
polynomial as follows:
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ui =
N
∑

j=1

λjφj(ri) +
M
∑

k=1

akpk(~xi), for i = 1, . . . , N. (12)

where the terms pk(~xi) form a basis for the M =
(

d+m−1
m−1

)

-dimensional linear space
∏d
m−1 of polynomials of

total degree less than or equal to m− 1 in d variables. The addition of a polynomial leads us to a system of N
linear equations in N +M unknowns, therefore M additional (orthogonality) conditions are required to ensure
a unique solution. These conditions are known as the moment constrains and are written as follows:

N
∑

j=1

λjpk = 0, for k = 1, . . . ,M, (13)

While the use of polynomials is somewhat arbitrary, it is expected that the addition of polynomials of total
degree at most m− 1 guarantees polynomial precision, see [6].

Substituting equation (12) in the equation (8), results in

N
∑

j=1

λjLφj(~xi) +

M
∑

k=1

akLpk(~xi) = f(~xi) = fi, for i = 1, . . . , NI (14)

N
∑

j=1

λjBφj(~xi) +

M
∑

k=1

akBpk(~xi) = h(~xi) = hi, for i = NI + 1, . . . , N.

The system (14) along with the moment constrains (13) can be written in matrix form as follows





WL PL
WB PB
PT 0





[

Λ
A

]

=





F
H
~0



 (15)

where A = [a1, . . . , aM ]T is the vector of coefficients for the polynomial, 0 is an M ×M matrix consisting of
zero elements, ~0 is a vector of M zero elements and:

WL is an NI ×N matrix with elements Lφj(ri), for i = 1, . . . , NI , j = 1, . . . , N ,
WB is an NB ×N matrix with elements Bφj(ri), for i = NI + 1, . . . , N, j = 1, . . . , N ,
PL is an NI ×M matrix with elements Lpk(~xi), for i = 1, . . . , NI , k = 1, . . . ,M ,
PB is an NB ×M matrix with elements Bpk(~xi), for i = NI + 1, . . . , N, k = 1, . . . ,M .
PT is an M ×N matrix with elements pk(~xi), for i = 1, . . . , N, k = 1, . . . ,M .

2.4 Ill-conditioned linear systems

The matrix systems given in (11) and (15) are generally non-symmetric and full. These systems of equations
are known to be ill-conditioned, even for moderate N . This ill-conditioning worsens with N or with a flat
RBF, for example with the MQ-RBF with large shape parameter c. Although some very rare combinations of
data center arrangements and c can produce a singular matrix, the singularity can be removed by perturbing
either the value of c or the data centers.

There is ample evidence that RBFs, especially MQ-RBFs, offers some computational advantages over tra-
ditional methods, particularly is a truly mesh-free scheme that possesses very high orders rates of convergence.
For small to moderate sized problems, RBFs do outperform traditional methods. The main concern is whether
RBFs can be computationally efficient with large scale, complex problems. To circumvent the ill-conditioning
problem, for large N it is possible to adapt the procedures used in large scale mesh-based PDE methods by
combining preconditioning, domain decomposition, and using parallel computers.
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2.4.1 The GMRES iterative method

Solving large systems coming from RBF technique with non-customised methods is computationally expensive.
For example, using the usual direct methods to fit an RBF with N centres requires O(N2) storage and O(N3)
flops. Thus such an approach is not viable for large problems with N ≫ 10, 000. To overcome this situation,
the combination of an efficient iterative algorithm and a preconditionator is required.

The GMRES iterative method for non-symmetric systems is a Krylov subspace method and its convergence
properties parallel those of the conjugate gradient (CG) method for symmetric positive definite systems. Unlike
CG iteration, GMRES iteration requires storage of all the previous search directions, or equivalently storage
of an orthonormal basis for kk, where

kk = span{r0, Ar0, . . . , Ak1r0},

and rk = b−Axk is the residual at the kth step of GMRES. In the kth iteration of GMRES xk is taken as the
unique solution of the least squares problem

min
x∈x0+kk

||b−Ax||2

The kth iteration of the GMRES algorithm on an N × N system requires one matrix-vector product and
O(kN) additional floating point operations. The method also requires the storage of an orthonormal basis for
the Krylov subspace so that conjugate vectors can be formed at each iteration. Hence, if the total number
of iterations is K, total storage requirements, excluding any storage needed for the matrix A or computing
its action, is O(KN). The corresponding flop count is K matrix-vector products and O(K2N) other floating
point operations. More details of the algortihm can be found in [32].

Due to its features, GMRES is one of the algorithms commonly used to solve the full systems that appears
in RBF techniques, and will be used in this work in combination with the preconditioner described in the next
section.

2.4.2 Approximated Cardinal Basis Functions Preconditioner

Given a matrix system Gα = b as in (11), it is possible to construct a left-hand preconditioner W , and to
solve the equivalent system WGα = Wb, for the undetermined coefficients α. The application of such a
preconditioner to a bad-conditioned matrix, results in clustering the eigenvalues of the matrix and therefore
reducing the total number of iterations required for GMRES (or other algorithm) to converge. Using a basis
of cardinal functions, see [14], which would be equivalent to a delta-function, δ(~xi) that is one at its center ~xi
and zero everywhere else, would result in WG = I, where I represents the identity matrix. For this matrix
GMRES would converge in one iteration. However, this is totally impractical because the preconditioner would
need to be exactly the matrix inverse. The strategy that is used instead, is to construct the preconditioner
using approximate cardinal basis functions (ACBF).

In this work the LS-ACBF preconditioner, proposed by Ling et al. [19] is used to improve the condition
numbers of the linear systems. The idea in the construction of LS-ACBF preconditioner is to satisfy the above
cardinal condition in the least-squares sense. A brief description of this preconditioner is given below.

Let φI and φB denote the NI and NB RBFs whose center is in Ω and in ∂Ω respectively. The rows of the
matrix G, from equation (11), are discrete function values given by:

{Ψ(~x)}Ni=1 = {{LφI(~xi − ~x)}NI

i=1 ∪ {BφB(~xi − ~x)}NB

i=1} (16)

Each column of G has contributions from NI entries of LφI and NB entries of BφB. For each center ~xi ,
select a small subset of centers or support of size m≪ N indicated by the index set

Si = [s
(1)
i , s

(2)
i , . . . , s

(m)
i ], i ∈ Si, (17)
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such that we try to enforce the condition

∑

j∈Si

wjΨj(~x) = δ(~x), for all ~x ∈ X, (18)

where δi(~x) is one at ~xi and zero elsewhere.

The index set Si is a combination of local nearest centers to ~xi and special points distributed on the domain.
Si will be the ml local nearest centers to ~xi that can be found efficiently in O(NlogN) flops, and ms special
points where ml +ms = m.

In this work the points are ordered using the kD-tree structure. The main idea is to decompose the
multidimensional space into hyperrectangles, using splitting planes perpendicular to the coordinate system
axes. Every node of a kD-tree, from the root to the leaves, stores a point, as a consequence, each splitting
plane must go through one of the points in the kD-tree, see figure 1. More on this kind of techniques can be
found in [33].

1

2

3

4

5

6

7

8

9

10

(2,3)

(8,1)

(5,4)

(4,7)

(6,2)

(9,6)

(8,1)

y

x
1 2 3 4 5 6 7 8 9 100

(5,4) (9,6)

(6,2)

(2,3) (4,7)

{(x, y): x < 4, y > 3}

Figure 1: Example of a kDtree structure in 2D.
The first vertical splitting plane, passing by (6,2) divides the domain in two sub-rectangles. Each sub-rectangle
contains the half (or so) of the total number of points. Then two horizontal splitting planes (red), passing by
(5,4) and (9,6) divide the two sub-rectangles in four, in such a way that the four sub-rectangles contains almost
the same amount of points, and so on.

A number of special points to control the shape and to ensure the linear independence of all the ACBFs in
the domain Ω, are chosen adequately. When the nearest neighbor subset is unbalanced about ~xi , the least-
squares ACBFs centered at different points near the boundary points may become too similar in shape, have
considerable overlap, and become considerably less linear independent without the presence of special points.
In general, the special points are taken to be located on the boundary of the domain. For an explanation of
this behaviour refers to [19].

Equation (18) yields N equations for m < N unknowns. Let Bi be the m×N matrix formed by selecting
m rows of G from the index set Si. This matrix is written as follows:
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Bi =













G(s
(1)
i , 1) G(s

(1)
i , 2) . . . G(s

(1)
i , N)

G(s
(2)
i , 1) G(s

(2)
i , 2) . . . G(s

(2)
i , N)

...
...

...
...

G(s
(m)
i , 1) G(s

(m)
i , 2) . . . G(s

(m)
i , N)













∈ R
m×N . (19)

Then, is possible to rewrite (18) in matrix form as follows:

BTi ~wi = ~ei, (20)

where ~wTi = [w
(1)
i , w

(2)
i , . . . , w

(m)
i ] are the nonzero elements of the ith row of W , and ~ei is the ith N×1 standard

canonical vector. Each center ~xi is associated with a row of the preconditioner W that approximates the ith
ACBF using m different rows of G. Since Bi has full rank m, BiB

T
i is a nonsingular m×m matrix. Thus, ~wi

can be uniquely determined.
The final shape of the preconditioner W will have ~wTi P as its rows where P is the m × N permutation

matrix that maps the elements of ~wi from Si back to the corresponding global index set of the ith row of W .
Mathematically this is expressed in the next formula:

Wij =

{

w
(k)
i if j = s

(k)
i for k = 1, . . . ,m,

0 otherwise
(21)

The preconditioner W is obtained after solving N least-squares problems. Each row of W will operate on
the correct rows of G and the preconditioned matrix WG will have the ACBFs as its rows. The overdetermined
linear system (20) can be solved in the least-squares sense: problem has a unique solution ~w that minimizes
||BTi ~w − ~ei||2. This problem can be solved via the corresponding local normal equation (L-NE). Multiplying
the equation (20) by Bi from the left to gives the normal equations,

BiB
T
i ~wi = Bi~ei. (22)

Note that the m×m normal matrix BiB
T ∈ Rm×m on the left of (22) is a submatrix of GGT , namely the

(Si, Si) elements of GGT :

BiB
T
i =













GGT (s
(1)
i , s

(1)
i ) GGT (s

(1)
i , s

(2)
i ) . . . GGT (s

(1)
i , s

(m)
i )

GGT (s
(2)
i , s

(1)
i ) GGT (s

(2)
i , s

(2)
i ) . . . GGT (s

(2)
i , s

(m)
i )

...
...

...
...

GGT (s
(m)
i , s

(1)
i ) GGT (s

(m)
i , s

(2)
i ) . . . GGT (s

(m)
i , s

(m)
i )













. (23)

Note that only O(mN) elements of GGT are needed for all N normal matrices, taking this into account a
considerable amount of storage and computational savings is obtained. From (23) can be observed that the
m × m elements of GGT correspond to a particular normal equation, BiB

T
i . The union of all the relevant

elements i = 1, 2, . . . , N is depicted in figure 2.
The QR factorization and the SVD methods can also be used to solve (20) directly. More details about the

preconditioner and alternate algorithms to solve the least-squares problem can be found in [19, 21].

2.4.3 Domain Decomposition: Additive Schwarz Method

The earliest concept of domain decomposition method (DDM) was introduced as a classical Schwarz alternating
algorithm by Schwarz in 1870, which provided a parallel, potentially fast, and robust algorithm for the solution
of linear or non-linear systems of equations resulting usually from discretizations of PDEs. With the advent of
powerful supercomputers, the DDM has been well developed for FDM, FEM and FVM, see for example [34].
Recently the additive and multiplicative Schwarz iterative techniques has been incorporated into the RBFs
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Figure 2: Relevant elements of GGT necessary for the construction of all BiB
T
i matrices, for the heat transfer

example presented in section 4.1

for solving large scale problems [35, 17, 18]. Numerical results show that this provides an alternative to avoid
the ill-conditioning problem by solving many small subdomain problems instead of one global large domain
problem.

Consider the boundary value problem defined in the equation (8) for the domain Ω shown in figure 3.
In figure 3 the next definitions are valid: Ω = Ω1 ∪ Ω2; Ω,Ω1,Ω2 are open; ∂Ω is the real boundary of Ω;
Ω̄ = Ω∪∂Ω is the closure of the domain; Γi is the artificial boundary of Ωi which lies inside of Ω; ∂Ωi\Γi is the
boundary of Ωi without Γi; u

n
i is the approximated solution in Ω̄i after n iterations; uni |Γj

is the restriction of
uni in Γj , for i 6= j.

Ω1

Ω1∂

Ω∂

Ω

Ω2

Ω2∂

∂ | Γ1Ω1

∂ | Γ2Ω2

Γ1Γ2

(a) (b)

Figure 3: (a) Global domain and (b) its partition in two subdomains.

The classical alternating Schwarz algorithm is given by
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Lun1 = f in Ω1

Bun1 = g on ∂Ω1\Γ1

un1 = un−1
2 |Γ1

on Γ1

and

Lun2 = f in Ω2

un2 = g on ∂Ω2\Γ2

un2 = un1 |Γ2
on Γ2

For each subdomain, the same PDE is solved in the interior Ωi and on the natural boundary condition ∂Ωi\Γi.
A Dirichlet condition is imposed on the artificial boundary Γi, so that numerical solution on subdomain Ωi
matches the newest approximation on Ωi. All initial guesses, u0

i , can be initialized with zero vectors.
Suppose we have discretized the boundary value problem using some method (FVM, FEM, FDM or RBF), in

such a way that the linear system for the domain Ωi is written as Aiui = fi. The discrete vector asociated with
ui is defined as uTi = (uΩi

, u∂Ωi\Γi
, uΓi

). In the same way, the matrix of the system is Ai = (AΩi
, A∂Ωi\Γi

, AΓi
).

The discrete form of uni |Γj
is written as V nj . The basic alternating Schwarz algorithm is:

Alternating Schwarz algorithm

.
01 V 0

1 ← 0.
02 For n = 1, ...
03 Solve for un1 :
04 A1u

n
1 = f1 in Ω1

05 un∂Ω1\Γ1
= g1 on ∂Ω1\Γ1

06 unΓ1
= V n−1

1 on Γ1

07 V n2 ← un1 |Γ2

08 Solve for un2 :
09 A2u

n
2 = f2 in Ω2

10 un∂Ω2\Γ2
= g2 on ∂Ω2\Γ2

11 unΓ2
= V n2 on Γ2

12 V n1 ← un2 |Γ1

13 Check convergency:
14 If ||V n1 − V n−1

1 || ≤ tolΓ1
y ||V n2 − V n−1

2 || ≤ tolΓ2
END.

15 If ||un1 − un−1
1 || ≤ tolΩ1

y ||un2 − un−1
2 || ≤ tolΩ2

END.
16 End For

Note that the previous algorithm is serial. A parallel version for K subdomains will be presented in section
4.7.
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3 OOPS: Object-Oriented Programming for Scientific Computing

Scientific computing has changed dramatically within the last decades reaching an unprecedented degree of
complexity. The vast advances made in the development of new hardware architectures and modern numerical
methods provide us with tools to tackle more and more complex problems. As a result, certain scientific prob-
lems can be simulated with a very good accuracy and nowadays, scientific computing has become indispensable
in many fields, such as engineering, science, and even in social sciences and medicine. The coding of complex
numerical algorithms need to be portable and efficient in order to achieve good performance on the majority of
available hardware resources. Consequently, the design and development of software is an essential component
within scientific computing, and requires an interdisciplinary cooperation of experts from several areas of study.

Sophisticated algorithms, a wide range of large-scale hardware environments, and an increasing demand for
system integration and portability have shown that language level abstraction must be increased without loss
of performance. Using numerical methods and reference implementations from popular textbooks is often not
sufficient for the development of serious scientific software. In a similar way, the use of high-level programming
languages contained in tools like Mathlab, can support the initial development of new numerical methods
and the rapid implementation of prototypes. However, these packages are not sufficient as High-Performance
Computing (HPC) kernels and neither are they intended for this purpose.

The traditional paradigm for writing scientific software is known as structured where the code is separated
into subroutines and/or functions that can be called from a main program. The common languages used are
Fortran (77 and 90) and C. While tens of thousands of lines of structured Fortran code may be understandable,
as algorithms develop in complexity, and programs stretch to hundreds of thousands of lines, more attention
will need to be paid to the software development process. In many cases there is relatively little sharing of
scientific code (i.e. software reuse), and scientific codes tend to be extremely specialized. Most codes implement
a single method; if a different method is required, usually a new program is written. This can be extreme:
often a different program will exist for each system studied.

Solutions to these problems are known. They were developed by computer scientists when the business
world suffered its software crisis in the 1980s. Techniques such as object-oriented programming and generic
programming are now well established, and have proven themselves. They are even starting to penetrate
scientific fields.

The Object-Oriented paradigm exhibit powerful features like abstraction, classes, inheritance and polymor-
phism, that can ease the development, maintainability, extensibility and usability of complex software. In OOP,
a program is broken down into largely independent pieces, interacting via well-defined interfaces. Writing a
large OO program is similar to writing lots of small programs, and the implementation of each part can be
changed without fear of breaking the whole package. Because OO software tends to be better organized, there
are more opportunities for code reuse. Instead of writing a completely new program, a new method can be
implemented into a class, then objects of these classes interact with other objects to solve a problem using the
new method. Extending an OO program often only requires a few lines of existing code to be changed.

Notwithstanding, mostly of scientific libraries are still implemented in non-object-oriented languages. The
main reason of this fact is because the abstractions generally result in a runtime overhead that is sometimes
hard to avoid. In HPC, C++ used to have a bad reputation due to a bad runtime performance. However,
C++ provides generic programming, via the use of templates [36], which allows high performance code to be
written, without sacrificing expressiveness. Generic programming allows code to be written for generic types;
the types used are determined at compile time, allowing the compiler to perform aggressive optimizations.
Other techniques, like Metaprogramming [37] and Expression templates [38], help to get good performance as
well. There are presently several examples where C++, OOP and generic programming have been used in the
construction of new frameworks for scientific computing applications. Some real and succesful libraries can be
found in [39].
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3.1 Software developing process

Scientific software is typically written with little attention paid to design. For small programs, this is often the
fastest route to results, but as software grows over time, it is difficult for programmers to maintain such codes
and to add new features.

Nowadays exist strategies in order to develop software in an incremental and ordered way. The Unified
Software Process [24] is an standard used in designing big software systems in fields like finance and data
bases. This process provides a guide for the software development and follows mainly 4 phases: Inception,
Elaboration, Construction y Transition, which in turn are divided in milestones. These milestones are developed
in iterations, and each iteration consists on: 1) Requirements, 2) Analysis, 3) Design, 4) Implementation, 5)
Testing and 6) Documentation. In each iteration a new version of the software is released and this version
contains new features, but also must be compatible with previous versions. Figure 4 depicts the Unified Process
Model.

Documentation

1 2 3 4 5 ... ... ... ... ... ... ... ...... n−1 n

Inception Elaboration Construction Transition

Iterations

Phases

S
te

ps

Testing

Analysis

Requirements

Design

Implementación

Iteration

Figure 4: Software developing process (Unified Model).

Some times is not easy to apply the Unified Model to scientific applications. In the figure 5 an adaptation
of the Unified Model is presented. The main idea is to include the principal steps of a mathematical modeling
as parts of the software developing. This help us to determine the essential abstractions required to solve
a given problem. Also, it is important to define a set of problems as a targets to be solved by our system.
Beginning with simple problems, the process starts specifying the governing equations that need to be solved,
then we followed the steps specified in figure 5 doing several iterations. After several iterations, we get many
components that can be used for solving the target problems and likely these components are useful for other
sort of problems.

3.2 Template Units for Numerical Applications : RBF method

TUNA::RBF is a set of templated functions, classes and namespaces constructed in this project. This is a
framework for solving PDEs coming from CFD problems using RBF mesh-less methods. C++ language was
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Figure 5: Software developing process for Scientific Computing.

used to implement the components of the frameworks using OOP and generic programming. The software
development process showed in figure 5 was applied as well.

TUNA::RBF re-use the next open source libraries for HPC:

• FLENS : Flexible Library for Efficient Numerical Solutions is used for matrix, vector and linear algebra
operations. FLENS provide a very expressive and efficient interface that ease the implementation of
scientific code. Is based on LAPACK and BLAS. (http://flens.sourceforge.net).

• libKDtree++ for ordering the points and finding the neighborhood of each point in efficient times.
(http://libkdtree.alioth.debian.org/).

• MPI-2 for parallel code.

Next section shows results obtained with the application of TUNA::RBF. The components of the software,
examples of use and a reference manual can be obtained from http://www.dci.dgsca.unam.mx/lmcs/soft.html.
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4 CFD examples

The examples presented in this section are intended to test and calibrate the framework that has been developed
during this proyect. These examples have been instensely studied and used to test new numerical methods,
and there exist a plenty number of works to compare with. The idea in this work, is to solve the PDEs of these
problems using the asymmetric collocation RBF mesh-less method from Kansa [5] and to study the behavior
of numerical solutions under different conditions.

For all the examples that follow the Multiquadric RBF kernel for β = 1 and its derivatives are used to
calculate the numerical solution. In the mostly of the cases the shape parameter is set equal to c = 1/

√
N as

is recommended in [19].

4.1 Poisson equation in 2D

Suppose that it is required to obtain the steady-state temperature distribution on a two-dimensional rectangular
plate as shown in figure 6(a). The governing equation and the imposed boundary conditions for this example
are:

∂2T

∂x2
+
∂2T

∂x2
= 0 (24)

T = T1 = 100 for y = 0, T = T2 = 0 for x = 0,
T = T3 = 0 for y = H , T = T4 = 0 for x = L

and the analytical solution is, see [40]:

T = T1



2
∞
∑

n=1

1− (−1)n

nπ

sinh
(

nπ(H−y)
L

)

sinh
(

nπH
L

) sin
(nπx

L

)



 (25)

T2

x = 0
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Figure 6: (a) Rectangular plate subject to constant temperature distribution at the boundaries. (b) Contours
and (c) surface of the exact solution, equation (25).

The problem above described was first solved using the Finite Volume (FV) method, see [41, 42]. To this
end, the TUNA::FV library [43] was used. This is an Object-Oriented and Generic library, written in C++
using templates to obtain good performance. Whenever possible, this tool will be used to obtain numerical
solution of the examples presented in this report for comparing purposes.
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The same values for the parameters as in [40] were used here, that is: Nx = 21, Ny = 41, ERRORMAX =
0.01 and the error is defined as:

ERROR =
∑

i,j

|T k+1
i,j − T ki,j |, for i = 2, . . .Nx− 1, j = 2, . . . , Ny − 2 (26)

where T ki,j represents the value of the temperature in the point (xi, yj) at iteration k.
The linear systems coming from the FV method are solved in TUNA::FV using the Thomas algorithm for

tridiagonal systems, extended to 5 diagonals for problems in 2D, and 7 diagonals for 3D, see Malalasekera[42].
The main idea is to sweep line by line in along the axis, solving tridiagonal systems for each line and updating
the variables on each point on the line swept. In this example two sweep by iteration are done, one in x
direction and one in y direction. The number of iterations to get the prescribed error were 29; the RMS error
and the maximum error were 0.2607, and 3.0470 respectively. The figure 7 shows the result of this calculation.
The table 5 compares these results with those obtained using RBFs.
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Figure 7: Solution of the equation (24) usin FV method. (a) Contours and (b) surface. (c) Error and residual
(r = |b−Ax|), and (d) error distribution (|Texact − Tnum|).
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4.1.1 MQ-RBF: Uniform distribution

In this section the MQ-RBF solution of the previously described problem is obtained. A set of collocation points
are distributed as follows: NI random or uniform points in the interior of the domain Ω = (0, L)× (0, H) and
NB equispaced points on the boundary ∂Ω = ∂{[0, L] × [0, H ]}. Following the methodology of section 2.3,
without adding any polynomial, the equation (6) is substituted into the equation (24) to obtain a linear system

similar to that represented in equation (10). In this case L = ∇2 = ∂2

∂x2 + ∂2

∂y2 and B = I. For this example
f = 0 and the boundary conditions requires g be equal to zero on the boundary except on the points that lie
on the bottom wall, where the value of g is equal to 100.

The first test was with a uniform distribution of collocation points. The total is N = Nx×Ny = 16× 31 =
496, where Nx is the number of points in the x-axis, Ny is the number of points in the y-axis, see figure 8(a).
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Figure 8: (a) Uniform points distribution. (b) Contours and (c) error distribution.

The solution depicted in figure 8(b) shows good agreement with the analytical solution, however the numer-
ical error, figure 8(c) is greater than for the case of FV. In this case the RMS error was 1.0905 and the maximum
error was 9.7053. The problem was solved using Gauss elimination, GMRES and GMRES preconditioned. A
comparison of these algorithms is shown in table 2.

Algorithm Precond. Iter GT / T

Gauss - - 1.00
GMRES - 240 1.69
GMRES Jacobi 108 4.40
GMRES ACBF(10) 25 16.5

Table 2: Performance for the different algorithms.
GT / T represent the rate of speedup of the algorithm with respect to the Gauss elimination.

As can be seen from the table 2, the GMRES performs well compared against Gauss elimination. Also, it
is convenient to use a preconditioner to reduce the condition number of the original matrix. In this case the
simple Jacobi preconditioner make very good job reducing the number of iterations to less than a half of that
required by the no preconditioned GMRES.

The ABCF preconditioner is from Kansa [19] and is based upon constructing the least-squares Approximate
Cardinal Basis Functions that targets ill-conditioned problems, see section 2.4.2. The consuming time of this
algorithm is proporcional to m. In table 2, m = 10 is used and the performance was measured only for the
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GMRES iteration without taking in to account the time for constructing the preconditioner. In the table 3 the
time to calculate the preconditioner in function of m is reported.

m GMRES GMRES ACBF Precond. Total
Iter. Time KDT FN LS

8 28 0.05 0.01 0.17 0.42 0.65
10 25 0.04 0.01 0.21 0.39 0.65
20 17 0.03 0.01 0.24 0.70 0.98
30 15 0.03 0.01 0.26 1.14 1.44
50 13 0.03 0.01 0.39 2.10 2.53
100 10 0.03 0.01 0.46 5.77 6.27

Table 3: CPU time to construct the ACBF preconditioner. All the times are in seconds.
KDT : KD-Tree construction; FN : Finding the neighbors to all the collocation points; LS : Least-square

problem solution.

From table 3 it is obvious that the consuming time for the ACBF preconditioner is not economic for large
m. The total time presented in the last column would be the total time for solving the linear system including
the construction of the preconditioner. In this case the best value of m in terms of calculation time and number
of GMRES iterations is 10.

Even though the consuming time for constructing the ACBF preconditioner is expensive for this example,
in the case of time-dependent problems it could be very valuable to use this preconditioner, because for fixed
collocation points the preconditioner just needs to be calculated once at the beginning, and for every time
step the number of GMRES iterations will be reduced drastically compared with the Jacobi preconditioner.
Besides, here the L-NE technique was used to solve the N- least-square problems required in the construction
of the preconditioner, but it is possible to use other optimized algorithms that can reduce the consuming times,
see [19] for more details.

4.1.2 MQ-RBF: Random distribution

One of the advantages of RBFs is the possibility of using a random distribution of collocation points to
approximate the solution of a PDE. The examples of this section are intended to illustrate the dependence of
the solution with respect to the point distribution.

In figure 9 results for two different distributions are shown. Table 4 shows the comparison between the two
random distribution. In both examples m = 10 and c = 0.04.

Dist. GMRES GMRES ACBF Precond. (secs) Total RMS Max. Error
Iter. Time (secs) KDT FN LS

1 48 0.06 0.01 0.05 0.51 0.63 2.79798 18.9085
2 32 0.04 0.01 0.21 0.33 0.59 0.39212 2.78903

Table 4: Results for random distribution.
1 is the distribution shown in figure 9(a) and 2 is that shown in figure 9(d).

As can be seen from figure 9 and table 4 the error growth for a badly distribution of points. In order to
get a better precision it is necessary that the points cover uniformly all the domain and there are not empty
zones or cluster of points. If the points have a good distribution, especially near the boundaries, or where the
strong gradients are located, the precision can be better than that of a regular distribution or even than that
from the Finite Volume Method, see table 5 for a global comparison.

At this stage, it is important to notice the need of controlling random distribution in order to avoid bad
results. The distribution of figure 9(d) was controlled allowing a point be randomly located in a limited region
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Figure 9: Random distribution of collocation points for the heat transfer example.
Distribution 1 : (a), (b) and (c), results for a badly distribution. Distribution 2 : (d), (e) and (f), better global
random distribution.

of the domain, but not on the whole domain. In this case, every point is allowed to move inside cells defined
by a regular mesh.

4.1.3 MQ-RBF: Points near the boundary

As was noted in the previous section, the distribution of points for a constant shape parameter is very important,
especially near the strong gradients. In the problem studied here, the strongest gradient is located near the
bottom boundary.

The distribution shown in figure 10 contains a set of points near to the boundary. This distribution produce
very good results. Similar point distribution was used in [22] resulting in an improved accurary of the numerical
results. In this case the RMS error was 0.250542 and the Maximun error was 1.74965. This result is better
than that obtained with FVM. The table 5 shows a global comparison.

This is a very simple example, however the discontinuity on the boundary conditions makes difficult to get
a good numerical solution. In the case of FV, the solution is obtained very fast in comparison with RBF, but
more points are needed to get good pecision. In particular, is not possible to get better results with a finer
mesh, especially near the bottom boundary. On the other hand, the cost of getting a good solution with RBF is
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Figure 10: Best distribution collocation points for c = 0.04.

Case Points Iter RMS Max T / FVT

FV 861 29 0.2607 3.0470 1.0
RBF 1 496 25 1.0950 9.7053 4.0
RBF 2 496 48 2.7979 18.9085 6.0
RBF 3 540 32 0.3921 2.7890 4.0
RBF 4 540 25 0.2505 1.74965 3.0

Table 5: Global comparison for the heat transfer problem.

FVT / T is the ratio between the Finite Volume consuming time and the consuming time of the RBF method for
different distributions. FV: Finite Volume solution; RBF1: uniform distribution, figure 8(a); RBF2: badly ran-
dom distribution, figure 9(a); RBF3: good random distribution, figure 9(d); RBF4: Best regular distribution,
figure 10(a).

expensive compared with FV. However the best solution is only 3 times slower than FV. Besides the precision
is better and the implementation of RBF methods is simple: the same functions can be used for 2D and 3D
problems. The powerful of RBF methodology should be clear when dealing with time-dependent problems and
in complicated geometries.

4.1.4 Shape parameter

The MQ-RBF incorporate a user-defined shape parameter c. The value of this scalar determines the region of
influence of the MQ-RBF kernel. Many numerical studies using MQ-RBF have shown that this kernel gives
better performance than others, and it has been observed that the accuracy of the numerical solutions depends
heavily on the value of c. An optimal value of this parameter is not easy to find and is still an open problem in
the literature. The influence of the shape parameter on the accuracy of the solution follows a U-shape curve.
The figure 12 depicts the behaviour of the error in the case of the problem studied in the previous sections. As
can be seen, a short value of c produce bad accuracy, a minimum of the error is reached when c ≈ 1/

√
N , and

after this value the accuracy become worse as c is incremented. The value c = 1/
√
N has been used in several

studies with good results, see for example [19].
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4.2 Laplace equation in a Semi-circle

One advantage of mesh-less methods is the possibility of solving problems in complex geometries. As a test,
the solution of Laplace equation in the semi-circle shown in figure 12(a) is obtained using MQ-RBF. In terms
of code developing, it is only needed to implement a function or a class to distribute the points on the irregular
domain and to reuse the classes developed before. The analytical solution to this problem is:

T (r, θ) = sin(θ)/r (27)

where θ and r represent the angle and the radius in polar coordinates. The boundary conditions for this
problem are, see figure 12(a).

T = sin(θ)/R0A for segment AC; T = sin(θ)/R0B for segment BD;
T = 0 for segment AB; T = 1/r for segment CD,

where R0A and R0B are the radii from point 0 to A and from point 0 to B respectively. The analytical solution
is depicted in figure 12(b).

Because this problem is very simple, and there is not high gradients present, it is possible to get a very
good precision in the numerical solution using a random distribution of points. In this case the solution was
obtained using NI = 126 and NB = 46, that is N = 172 points, see figure 12(c). The GMRES-ACBF with
m = 30 was used to solve the system, and a shape parameter c = 1/

√
N . The RMS error with respect the

analytical solution was of 0.1 % and the maximum was of 0.27 %. Figure 12(d) shows the error distribution
on the semicircle domain.
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Figure 12: (a) Domain of study, (b) analytical solution, (c) Point and (d) error distribution.
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4.3 Linear time-dependent advection-diffusion in 1D

The time-dependent advection-diffusion equation in one dimension is written as follows:

∂f

∂t
+ u

∂f

∂x
= Γ

∂2f

∂x2
(28)

where x and t are the space and time coordinates respectively, Γ is the diffusion coefficient, u is a constant
input velocity. The initial and boundary conditions for this example are

f(x, 0) = 0, for 0 ≤ x ≤ ∞, (29)

f(0, t) = 1, for t > 0, (30)

f(L, t) = 0, for t > 0, L→∞. (31)

The exact solution of this moving front problem for Γ > 0 is

f(x, t) = 0.5

[

erfc

(

x− ut
2
√

Γt

)

+ exp
(ux

D

)

erfc

(

x+ ut

2
√

Γt

)]

(32)

where erfc is the complementary error function.
To construct the solution in terms of RBF, the MQ kernel and its derivatives are assumed to be fixed and

the coefficients vary in time, that is λj = λj(t). Let fk ≈ f(x, k∆t). A backward Euler difference scheme is
used to approximate the time derivative in equation (28):

∂f(x, t)

∂t
≈ fk+1 − fk

∆t
(33)

then, using (33) in (28) results in the next sequence:

fk+1 + ∆t

[

u
∂fk+1

∂x
− Γ

∂2fk+1

∂x2

]

= fk

Now, expanding the left-hand side of this equation using MQ-RBF the next linear system is obtained

N
∑

j=1

λk+1
j φj(ri) + ∆t



u

N
∑

j=1

λk+1
j

∂φj(ri)

∂x
− Γ

N
∑

j=1

λk+1
j

∂2φj(ri)

∂x2



 = fk, for 1 ≤ i ≤ NI , k = 0, 1, . . . (34)

where λk+1
j represents the value of the coefficient λj at t = (k+1)∆t. Note that the solution at t = k∆t is used

as the initial guess for the matrix system defined at t = (k + 1)∆t. For the first step, the right-hand vector is
given by the initial conditions (29). The system (34) is completed with the expansion of boundary conditions,
equations (30) and (31) in terms of MQ-RBF, yielding an N ×N linear system.

The parameters used in this example were u = 1.0, ∆t = 0.002, tfinal = 1.0, which implies 500 time steps,
and D = 0.001. The numerical solution was calculated using Finite Volume and MQ-RBF. In the case of
FV the Upwind, Central and Quick schemes were applied to approximate de advective terms, and a Central
scheme for the diffusive term. The table 6 shows the results for 50, 100, 200, 250 and 350 points. In figure
13(a) the solution obtained for 50 points using FV is depicted. Figure 13(b) shows the best result using FV,
that is FV-Central with 350 points. For MQ-RBF approach, the system was solved using GMRES with the
ACBF preconditioner and the shape parameter was defined as c = 1/

√
N . Observe from table 6 that the error

obtained with MQ-RBF is small even with 50 points and there is not big improvement adding more points. The
figures 13(c) and (d) show the results obtained using 50 and 350 points. There is not a perceptible difference
between these two figures.
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Points RMS error
FV–Upwind FV–Quick FV–Central MQ–RBF

50 0.1143 0.0480 0.0712 0.0228
100 0.0877 0.0346 0.0383 0.0193
200 0.0658 0.0398 0.0263 0.0188
250 0.0598 0.0451 0.0220 0.0188
350 0.0517 0.0572 0.0193 0.0188

Table 6: RMS error for FV and RBF.
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Figure 13: Solution of the advection-diffusion in 1D. (a) Upwind, Quick and Central (50 points); (b) Central
(350 points); MQ-RBF for (a) 50 and (d) 350 points respectively.

From table 6 it is clear that the RMS error for FV-Central with 350 points and MQ-RBF with 100 points
is the same until 4 digits. In these cases the total CPU times were of 5.56 and 5.76 seconds respectively. The
ACBF preconditioner was constructed with m = 25 and no special points The average number of GMRES
iterations was of 18. However, when two special points are added (at the two ends of the domain), the average
number of iterations is down to 8 and the CPU time is reduced to 3.82 seconds.
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4.4 Forced Convection in 2D

In this example the time-dependent convection-diffusion equation in two-dimesnions is solved. The equation is
written as follows:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= Γ

(

∂2T

∂x2
+
∂2T

∂y2

)

(35)

where (u, v) is a prescribed velocity field that fulfills the continuity equation and is given by the next formula:

u(x, y) = −A cos(πy) sin(πλx/lx)and

v(x, y) =
Aλ

lx
sin(πy) cos(πλx/lx).

The initial condition is T = 0 and the boundary conditions are as shown in the next figure:

∂T

∂y
= 0

HT   = 0.5 T   = −0.5C

∂T

∂y
= 0

x = 0

y = 0

x = 1

y = 1

Figure 14: Geometry and boundary conditions

The boundary conditions of this problem includes a couple of Neumann conditions in the top and bottom
walls. In terms of RBFs these conditions are written as follows

∂T

∂y

∣

∣

∣

y=0
≈

N
∑

j=1

λj
∂φj(ri)

∂y

∣

∣

∣

y=0
= 0, for NI + 1 ≤ i ≤ N (36)

∂T

∂y

∣

∣

∣

y=1
≈

N
∑

j=1

λj
∂φj(ri)

∂y

∣

∣

∣

y=1
= 0, for NI + 1 ≤ i ≤ N

T
∣

∣

x=0
≈

N
∑

j=1

λjφj(ri)
∣

∣

x=0
= 0.5, for NI + 1 ≤ i ≤ N

T
∣

∣

x=1
≈

N
∑

j=1

λjφj(ri)
∣

∣

x=1
= −0.5, for NI + 1 ≤ i ≤ N
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The equations (36) are incorporated in the global linear system as was described in section 2.3. The same
formulation for the temporal derivatives as in section 4.3 was used here. The final linear system is written as
follows

[

WL11 WL12

WB21 WB22

]k

Λ = ~T k (37)

where the indices k and k+ 1 represents values at t = k∆t and t = (k+ 1)∆t. The sub-matrices WL11, WL12,
WB21 and WB22 are as defined in section 2.3 and the operators L and B are:

L = I + ∆t

[

u
∂

∂x
+ v

∂

∂y
− Γ

(

∂2

∂2x
+

∂2

∂2y

)]

B = I, for x = 0, 1

B =
∂

∂y
, for y = 0, 1

(38)

The results presented in figure 15 show the solution of equation (35) using FV-QUICK scheme in a mesh
of 65 × 65 = 4225, and the solution obtained using MQ-RBF with c = 1/

√
N and c = 0.25 for 16 × 16 = 256

uniformly distributed set of points. In this example ∆t = 1e − 04, A = 100, and m = 50 for the ACBF
preconditioner.
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Figure 15: Solution of the convection-diffusion in 2D.

(a) FV-QUICK in a mesh of 65× 65; (b) MQ-RBF for 16× 16 points and c = 1/
√
N = 0.0625. (c) MQ-RBF

for 16× 16 points and c = 0.25.

It can be observed in figure 15(b) that the solution using MQ-RBF presents small oscillations near the
boundaries were the Neumann boundary conditions are imposed. This is a well known problem in RBF
techniques: the approximation of the derivatives is less accurate than the function itself. In this case, the
approximation of the normal derivatives from Neumann conditions by the MQ-RBF kernel is not good. Some
authors have proposed solutions to this problems, see for example [22]. In figure 15(c) a better approximation
is shown. That solution was obtained increasing the shape parameter to c = 0.25. However the computational
effort was also increased, see the comparison in table 7 Figures 16 (a) and (b) present the temperature profiles
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across the center of the square along y-axis. In this figure it is possible to observe the departing of the MQ-RBF
solution with respect to the FV solution, near the Neumann boundary condition for a small shape parameter.
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Figure 16: Temperature profiles for the line x = 0.5.

(a) MQ-RBF for 16× 16 points and c = 1/
√
N = 0.0625. (b) MQ-RBF for 16× 16 points and c = 0.25.

Method N c GMRES avrg Iter Error CPU Time
FVM 65 × 65 – – 6111 1e-06 15.55

MQ-RBF 16 × 16 0.0625 10 1633 1e-06 14.89
MQ-RBF 16 × 16 0.25 78 1545 1e-06 98.00

Table 7: Comparison of the results for FV and MQ-RBF methods. Times are in seconds.
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4.5 Lid-driven cavity

The objetive in this section is to solve the well known lid-driven cavity using MQ-RBF. This is one of the
most studied fluid problem in CFD, because the simplicity of the cavity geometry allows us to apply almost
any numerical method on this flow problem. Despite its simple geometry, the driven cavity flow retains a rich
fluid flow physics manifested by multiple counter rotating recirculating regions on the corners of the cavity
depending on the Reynolds number. The geometry and boundary conditions are shown in the next figure.

u = 1, v = 0

v = 0
u = 0 u = 0

v = 0

u = 0, v = 0

Figure 17: Lid-Driven Cavity geometry.

In this examples the streamfunction-vorticity formulation is used. The equations are written as follows:

∂2ψ

∂x2
+
∂2ψ

∂x2
= −w (39)

u
∂w

∂x
+ v

∂w

∂y
=

1

Re

(

∂2w

∂x2
+
∂2w

∂x2

)

(40)

where the realtionship between velocity, streamfunction and vorticity are defined as:

u =
∂ψ

∂y
v = −∂ψ

∂x
(41)

w =
∂v

∂x
− ∂u

∂y
(42)

In this formulation the boundary conditions for the streamfunction are:

ψ = 0,
∂ψ

∂x
= 0 on x = 0, 1 (43)

ψ = 0,
∂ψ

∂y
= 0 on y = 0 (44)

ψ = 0,
∂ψ

∂y
= 1 on y = 1 (45)

For the case of the vorticity there are several manners to impose the boundary conditions, see [44]. The
calculation of second derivatives of the streamfunction is required to impose these boundary conditions. In
order to avoid to deal with RBF derivatives for the boundary conditions, a finite difference nine point stencil
is used to calculate those derivatives. The formula for the upper-left corner is written as follows:
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1

3h2





• • •
• −2 1

2
• 1

2 1



ψh +
1

9





• • •
• 1 1

2
• 1

2
1
4



wh = − 1

2h
(46)

and for the top wall the formula is:

1

3h2





• • •
1
2 −4 1

2
1 1 1



ψh +
1

9





• • •
1
2 2 1

2
1
4 1 1

4



wh = − 1

h
(47)

In the above formula a •means a point on the boundary. For other corners and walls the formulae are
similar.

As we can observe, the equations (39) and (40) are strongly coupled by the convective terms. In order to
deal with this non-linear coupling the next pseudo-temporal formulation is used:

∂ψ

∂τ
−
{

∂2ψ

∂x2
+
∂2ψ

∂y2
+ w

}

= 0 (48)

∂w

∂τ
−
{

∂2w

∂x2
+
∂2w

∂y2
−Re

(

u
∂w

∂x
+ v

∂w

∂y

)}

= 0 (49)

Substituing the RBF formulation for w and ψ, as was seen in section 2.3, and applying a backward Euler
scheme for the pseudo-temporal derivatives the above equations are converted in the next two linear systems:

N
∑

j=1

[λψ ]kj

[

φkij −∆τ

{

∂2φkij
∂x2

+
∂2φkij
∂y2

}]

= φk−1
ij + wk∆τ (50)

N
∑

j=1

[λw ]kj

[

φkij −∆τ

{

∂2φkij
∂x2

+
∂2φkij
∂y2

−Re
(

u
∂φkij
∂x

+ v
∂φkij
∂y

)}]

= φk−1
ij (51)

where [λw]kj and [λψ ]kj are the unknown cofficients for the MQ-RBF formulation of the vorticity and the
streamfunction respectively; the superscript k means the value of a variable at the k-th iteration; φij = φj(ri);
i, j = 1, . . .N ; ∆τ is the pseudo-time step.

The velocity components are calculated via the first derivatives of the streamfunction. These derivatives
can be calculated using the RBF kernel as follows:

ui =
∂ψi
∂y

=

N
∑

j=1

[λψ ]j
∂φij
∂y

(52)

vi = −∂ψi
∂x

= −
N
∑

j=1

[λψ ]j
∂φij
∂x

(53)

The algorithm used to solve the coupled equations of this problem is as follows:
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RBf algorithm to solve the Lid-driven cavity problem

.
00 Initialize and guess variables w, ψ, u, v
01 Calculate the streamfunction linear system
02 Calculate the ACBF preconditioner for streamfunction matrix
03 WHILE ( error > tolerance OR iter < Max. iterations)
04 Calculate the vorticity linear system
05 Calculate the Jacobi preconditioner for vorticity matrix
06 Update Boundary Conditions for the vorticity
07 Solve for the vorticity using GMRES
08 Update the source term of streamfunction
09 Solve for the streamfunction using GMRES
10 Evaluate the velocity
11 Check for convergence
12 END WHILE

The solution of the lid-driven cavity was carried on using 51× 51 = 2601 points uniformly distributed on
the domain, the shape parameter was c = 1/

√
N = 0.0196, and m = 50 for the ACBF preconditioner. The

results obtained with the implementation of the algorithm above presented are resumed in the table 8 In that
table the total number of pseudo-time iterations, average GMRES iterations for solving the streamfunction
and vorticity, and the umin, vmin, vmax velocity values are compared for different Reynolds number. It can
be observed that the ACBF preconditioner used for the streamfunction makes very good work in reducing the
ill-conditioning of the matrix, in such a way that the average GMRES iterations is maintained constant for all
Reynolds numbers. As the Reynolds number is increased the ill-conditioning of the system growths and more
iterations are needed to achieve the prescribed tolerance. Finally the values of the umin, vmin, vmax are in
good agreement with the values obtained by Ghia et al. [45], where the same problem was solved for a mesh
of 129× 129 = 16641 that is roughly 6 times the number of points used in our implementation.

Re Pseudo-temp Vorticity Stream MQ-RBF Ghia et al. [45]
iter iter iter umin vmin vmin umin vmin vmax

0 1329 244 17 -0.213524 -0.197132 0.197132 – – –
100 1477 265 17 -0.226325 -0.273417 0.195655 -0.21090 -0.24533 0.17527
400 2126 331 17 -0.343091 -0.45963 0.317437 -0.32726 -0.44993 0.30203
1000 3351 476 16 -0.385597 -0.515246 0.378291 -0.38289 -0.51550 0.37095

Table 8: Comparison of MQ-RBF results against Ghia et al. [45].

Figure 18 presents the distribution of the streamfunction and vorticity for different Reynolds numbers.
Observe that for Re = 1000 a little oscillations near the top-right corner appear. In fact, was not possible to
solve the problem for Re > 1000 with the same number of points. One manner to get ride of these oscillations
is increasing the shape parameter on the boundary or to use more points.

Finally, velocity profiles where obtained for the cases Re = 100, 400 and 1000. Figures 19(a), (c) and (e)
depicts the u-velocity across the center of the cavity along the line x = 0.5. Figures 19 (b), (d) and (f) depicts
the v-velocity across the center of the cavity along the line y = 0.5. In these cases it is possible to compare
our results with those obtained by Ghia et al. [45] and Erturk [46]. In the three cases our results are in good
agreement with the values obtained by Ghia and Erturk.

32



Figure 18: Streamfunction and Vorticity for 51× 51.
Re = 0, first row; Re = 100 second row; Re = 400, third row; Re = 1000 fourth row;
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Figure 19: MQ-RBF profiles compared against Ghia and Erturk results.
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4.6 Backward-facing step

Fluid flows in channels with flow separation and reattachment of the boundary layers are encountered in
many flow problems. Typical examples are the flows in heat exchangers and ducts. Among this type of flow
problems, a backward-facing step can be regarded as having the simplest geometry while retaining rich flow
physics manifested by flow separation, flow reattachment and multiple recirculating bubbles in the channel
depending on the Reynolds number and the geometrical parameters such as the step height and the channel
length.

In this example the backward-facing step is solved, the geometry is shown in the next figure:

h

h

2x 3x

1x

D

Figure 20: Backward-Facing Step geometry.

In this study, the inlet boundary is in the upper-half of the left wall. The height of the channel is 2h and
the length is D. The Reynolds number is defined as Re = 2hŪ/ν, where Ū is the mean velocity at inlet and
ν is the kinematic viscosity. The mathematical formulation and the RBF methodology are the same as in the
case of the Lid-Driven Cavity.

At the inlet boundary a fully developed Plane Poiseuille flow is imposed, such that the inlet velocity
profile is parabolic. At the exit boundary we used a parabolic velocity profile as well. The velocity and the
streamfunction are written as follows:

Velocity Streamfunction Wall
u(y) = 24y(1

2 − y) ψ(y) = 2y2(3− 4y)) Inlet
u(y) = 3

4 (1− 4y2) ψ(y) = 1
4 (3y − 4y3 + 1) Outflow

At top wall the value ψ = 0.5 is imposed. The vorticity value at the walls are calculated using Jensen’s
formula, see [44]

The results for different Reynolds numbers are presented in table 9. These results were obtained for 2h = 1,
D = 30, 60 × 15 = 900 uniformly distributed points, m = 20 for the ACBF preconditioner, and c = 1/

√
N .

Using the MQ-RBF method was possible to calculate the reattachment length x1 with good accuracy in
comparison with the work of Erturk [47], where a similar study was done for an ample range of Reynolds
numbers. For Re > 400 the systems becomes unstable and there is not convergence, more points or a bigger
shape pararmeter is required. Figure 21 shows the distribution of steamfunction and vorticity for the Reynolds
number studied here.
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Figure 21: Streamfunction and Vorticiy for the Backward-Facing Step.
(a), (b) Re = 100, (c), (d) Re = 200, (e), (f) Re = 300, (g), (h) Re = 400.

Re Pseudo-temp Vorticity Stream x1 x1

iter iter iter MQ-RBF Erturk [47]
100 536 121 97 2.930 2.922
200 794 143 103 4.975 4.982
300 1306 166 102 6.625 6.751
400 2065 189 101 8.120 8.237

Table 9: Comparison of the results for FV and MQ-RBF methods.
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4.7 Domain Decomposition

As a final example, the problem described in section 4.1 was solved using the alternating Schwarz algorithm.
The main idea is to partitionate the domain into several subdomains where the same PDE is solved, and the
boundary conditions at the interfaces of the subdomains are obtained from the neighbors. The numeration
showed in figure 22 (a) correspond to that given by the Cartesian communicator from MPI-2. Four partitions
were used in this example: 2, 4, 8 and 16 subdomains, figure 22 (b)

(b)

(0,2)
2

(1,2)
5

(2,2)
8

(2,1)
7

(2,0)
6

(1,0)
3

(0,0)
0

(0,1)
1

(1,1)
4

J

I

Virtual Topology

(a)

Figure 22: (a) Cartesian communicator in MPI-2, (b) four partitions used in this example.

The algorithm presented in section 2.4.3 is easily extended to a parallel version as follows:

Parallel alternating Schwarz algorithm

.
01 Make a partition of the domain
02 Define the problem in each subdomain
03 W 0

1 ← 0, ..., W 0
K ← 0

04 Parallel For k = 1, ...,K
05 For n = 1, ...
06 Solve for unk :
07 Aku

n
k = fk en Ωk

08 un∂Ωk\Γk
= gk on ∂Ωk\Γk

09 unΓk
= Wn−1

k on Γk
10 Check convergency :
11 If ||Wn

k −Wn−1
k || ≤ tolΓk

END
12 If ||unk − un−1

k || ≤ tolΩk
END

13 End For
14 Wait for all subdomains
15 Send unk |Γk−1 to the neighbours subdomains
16 W 0

k ← unnb|Γk

17 End Parallel For

Table 10 shows the result obtained for the 4 partitions depicted in figure 22 (b). The shape parameter was
calculated as usual c = 1/

√
N , for N = 1152, in such a way that the value c = 0.0294 was used in all the cases.

37



Also, and overlapping of 10% was used. The DDM iter represent the total number of cycles given by the Parallel
For of the above algorithm. As can be observed, the number of GMRES iterations is reduced as the number
of subdomains is increased, which means that the resulting linear system is better conditioned due to the less
number of points used in each subdomain. As the number of subdomains is increased, more communications
are required, so the number of DDM iterations is also increased. In the same way, the numerical error growths
with more subdomains.

Subdomains Points in GMRES avrg DDM Error
each subdom. ACBF(20) Iter RMS Max

1 × 1 = 1 24 × 48 = 1152 46 1 0.4436 4.7768
1 × 2 = 2 24 × 24 = 576 28 9 0.4528 5.7764
2 × 2 = 4 12 × 24 = 288 22 15 1.1891 10.3094
2 × 4 = 8 12 × 12 = 144 12 18 1.0480 10.4310
4 × 4 = 16 6 × 12 = 72 8 19 3.5420 14.1025

Table 10: Results for the Poisson equation using the parallel Schwarz algorithm.

5 Concluding remarks

During this project several CFD examples were solved using the asymmetric collocation RBF methodology.
The Multiquadric kernel was used in all examples obtaining very good accuracy for less number of points in
comparison with the FV method. However, the computational effort is in general similar or greater than in
the case of FV. Besides, special attention must be paid to the point distribution and to the shape parameter
that appear in the MQ-RBF kernel. The shape parameter has a U-shape behaviour with respect to the
numerical error: for smaller values of c the error is big, and it decrease as c is increased until reach a minimum.
This minimum is commonly obtained when c = 1/

√
N and this value provides better conditioned systems

reducing the computational effort. For c > 1/
√
N the accuracy is improved but the linear systems become

more ill-conditioned and sometimes the matrix is singular. In the case of problems with Neumann boundary
conditions, the shape parameter must be adjusted in order to get good results. This adjusting generally consists
in increasing c until get the accuracy required.

For Lid-driven cavity and Backward-facing step examples, it was possible to solve the Navier-Stokes equa-
tions in the streamfunction–vorticity for moderate Reynolds numbers. For higher values of the Reynolds
number it is required either to increase the number of points or to adjust the shape parameter to a value
c > 1/

√
N . Both techniques increase the ill-conditioning of the linear system and better algorithms and cheap

preconditioners are required. The ACBF preconditioner in general do very good work in reducing the number
of condition of the matrices, however, cheaper algorithms need to be implemented in order to construct this
preconditioner in reasonable times.

Another way for reducing the condition number of the matrices is by using a Domain Decomposition
technique. In this work a small example using the alternating Schwarz algorithm (additive) was implemented
to solve the Poisson equation. It was noted that the ill-conditioning is efectively reduced with the number of
subdomains, however the numerical error growths. Better parallel algorithms in order to reduce the numerical
error and the ill-conditioning need to be developed, particularly the use of the multiplicative version of the
Shwarz method could help to reduce the computional work. Also it is important to test these algorithms into
a multiprocessor hardware and to measure the speedup for a high number of processors.

The Object-Oriented framework for solving PDEs using the RBF methodology developed during this
project, is intended to be one of the first in using this technique, that also can be executed in parallel hardware.
This is an open source code and can be obtained from http://ww.dci.dgsca.unam.mx/lmcs/soft.hmtl.
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