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Abstract

Natural convection is a problem found in many applications, such as
solar energy, cooling of electronic equipment, air conditioning, etc. De-
spite its importance, for the case of turbulent natural convection flows,
the available turbulence models (RANS and LES) are still not capable of
reproducing important features of the flows such as the transition points
for certain ranges of Rayleigh numbers. The best tool to understand the
physics involved in this type of turbulent flows is Direct Numerical Sim-
ulation (DNS). In the followings sections will expose a step by step way
of discretize the governing equations. And this techniques will be applied
to the Differential Heated Cavity Problem.

1 The Governing Equations

The governing equations of the heat transfer by convection are a state equation
(relation among pressure, temperature and density) and conservation equations
of mass, linear momentum and energy. Assuming:

• Bidimensional model

• Laminar flow

• Incompressible flow

• Newtonian fluid

• Boussinesq hypothesis (constant physical properties everywhere except in
the body forces term)
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• Negligible viscous dissipation

• Negligible compression or expansion work

• Non-participating medium in radiation

• Mono-component and mono-phase fluid

the governing equations written in Cartesian coordinates are:
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where,

• β Coefficient of volumetric thermal expansion.

• cp Specific heat.

• λ Conductivity.

• g Gravitational acceleration.

• µ Viscosity.

• pd Dynamic pressure.

• ρ Density.

• t Time.

• T Temperture.

• u, v Velocity components.

• x, y Spatial coordinates.

• Φ Heat source.

They are partial coupled partial differential equations. The 4 unknowns
are the pressure, temperature, and the two velocity components u and v. An
appropriate boundary and initial conditions are required to close the problem.
Two strong coupling characterize this equations system:
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• pressure-velocity. There is no specific pressure equation. For incompress-
ible flows, the pressure is the field that makes the velocity accomplish the
mass conservation equation.

• temperature-velocity. This coupling is only present for natural convection,
mixed convection or temperature dependent physical properties. In forced
convection and constant physical properties, the velocity field does not
depend on the temperature field.

All the equations written above (1 − 4) can be summarized in the convection-
diffusion equation:

∂ρφ

∂t
+∇(ρ~vφ) = ∇(Γ∇φ) + S (5)

or in Cartesian coordiantes, incompressible flow and constant physical proper-
ties:
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The accumulation of φ, plus the net convective flow has to be the net
diffusive flow plus the generation of φ per unit of volume. The diffusive term
flows from greater to smaller value of φ. According to the convection diffusion
equation, we can write a table with the appropriate parameters in order to
reproduce the governing equations. See the Table.

Equation φ Γ S
Continuity 1 0 0

Momentum in x u µ −∂pd

∂x

Momentum in y v µ −∂pd

∂y + ρgβ(T − T∞)
Energy(constant cp) T λ

cp

Φ
cp

2 Finite-Volume Discretization

Integrating the convection-diffusion equation into a rectangular finite volume
(see Fig. 1), the discretized equation can be written:[HKV95]
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where the following hypothesis are done:
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Figure 1: Finite Volume

1. In the integration process, the convective and diffusive flows have been
considered constant through each face of the control volume.

2. (spatial deviation)n=(spatial deviation)n+1 (spatial deviation)w=(spatial
deviation)e (spatial deviation)s=(spatial deviation)n

3. The source term:
∫ n+1

n

∫ e

w

∫ n

s
Sdydxdt = Sn+1

P ∆x∆y∆t

2.1 Consistency, stability and convergence

A numerical approximation is consistent when the discretized equations are
solution of the differential equation when the spatial and temporal grid tend to
zero. Thus, as the grid is refined, truncation errors must tend to zero.[Fed84]

A numerical approximation is stable if the solution obtained is the solution
of the discrete equations. Possible roundoff errors, equations couplings, etc can
produce instabilities.

A convergent solution is a stable solution that tends to the solution of the
differential equations as the the meshes are finer. So, consistency and stability
are two necessary and sufficient conditions to get convergence.
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3 Analytical solution of the convection-diffusion
equation.One dimensional,null source term and
steady state solution

For this case the convection - diffusion equation is:[Seg97]

∂ρφ

∂t
+∇(J) = S (8)

where J = ρvφ−Γ∇φ and is the total flow: convective and diffusive. Rewriting
J for the specified conditions:

J = ρuφ− Γ
dφ

dx
(9)

Assuming a null source term S, equation 8 reduces to:

dJ

dx
= 0 (10)

and integrating over the control volume of figure 2:

Je − Jw = 0 (11)

Figure 2: Finite Control Volume for one dimensional problem

The resulting discrete equation can be easily solved imposing the following
boundary conditions:

in x = 0 → φ = φ0

in x = L → φ = φL

The analytical solution is:

φ− φ0

φL − φ0
=

exp(Px/L)− 1
exp(P )− 1

(12)

where P is the Peclet number and is defined as P = ρuL/Γ Graphical
representation of equation 12 can be seen in figure 3.
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Figure 3: Graphical representation of equation 12

Taking into account this exact analytical profile available, the flows in the
faces of the Control Volumes are:

Je = Fe(φP +
φP − φE

exp(Pe)− 1
) (13)

where Pe = (ρu)eδxe

Γe
= Fe

De

Substituting this flows in the discrete equation, we get an equations like:

aP φP = aEφE + aW φW (14)

The solution of this equation gives the exact solution of the differential
convection-diffusion equation in the nodal points whatever the discretization
mesh is.

4 General case. Bidimensional and Transcient

The convection-diffusion equation in this situation reads:[Seg98]

∂(ρφ)
∂t

+
∂Jx

∂x
+

∂Jy

∂y
= S (15)

where Jx = ρuφ− Γ∂φ
∂x and Jy = ρvφ− Γ∂φ

∂y

Integrating this equation over a control volume, assuming and implicit cri-
teria for the temporal integration and a constant flow at each face of the control
volume:

6



(ρφ)P − (ρφ)0P
∆t

∆x∆y + Je − Jw + Jn − Js = Sn
P + 1∆x∆y (16)

In order to assure convergence, is better to introduce the continuity equa-
tion in the discretized equation:

∂ρ

∂t
+

∂ρu

∂x
+

∂ρv

∂y
= 0 (17)

which is integrated over a control volume:

ρP − ρ0
P

∆t
∆x∆y + Fe − Fw + Fn − Fs = 0 (18)

where F = ρvS , S is the surface vector of the control volume. Then, we
can substract Eq 16 and 18·φp , and obtain:

(φP − φ0
P )ρ0

P

∆t
∆x∆y + (Je − FeφP )− (Jw − FwφP )+

+(Jn − FnφP )− (Js − FsφP ) = Sn+1
P ∆x∆y (19)

5 Numerical Schemes

It can be seen that in the discretizated convection-diffusion equation 7 convective
and diffusive terms are evaluated at the cell faces, whereas dependent variable
φ is known at the cell center. The evaluation of the variable at the cell face is
carried out by numerical schemes [Tri07].

Conductive flux is calculated as an arithmetic mean:

(
∂φ

∂x

)

e

=
φE − φP

δxe
or

(
∂φ

∂y

)

n

=
φN − φP

δyn
(20)

The order of a numerical scheme is the number of neighboring nodes that
are used to evaluate dependent variable at the cell face.

5.1 Low order numerical schemes

These numerical schemes evaluate the variable using nearest nodes: east (E),
west (W ), north (N) and south (S). Their order is 1 or 2. Most significant low
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order numerical schemes are:

• Central Difference Scheme (CDS): It is a second order scheme, variable at
the cell face is calculated as an arithmetic mean. That is:

φe =
1
2
(φP + φE) (21)

• Upwind Difference Scheme (UDS): It is a first order scheme and the value
of φ at the cell face is equal to the value of φ at the grid point on the
upwind side of the face. That is:

φe = φP if Fe > 0 (22)
φe = φE if Fe < 0 (23)

• Hybrid Difference Scheme (HDS): Uses CDS for low velocities and UDS
for high velocities.

• Exponencial Difference Scheme (EDS): It is a second order scheme and
the evaluation of the dependent variable at the cell face comes from the
exact solution of the convection-diffusion equation in one-dimensional, null
source term and steady problem.

• Powerlaw Difference Scheme (PLDS): It is a second order scheme and
variable at the cell face is calculated with an approximation of the EDS
by a polynomial of fifth degree.

If numerical schemes are introduced in the integrated discretized convection-
diffusion equation, it is obtained an algebraic equation for each control volume:

aP φP = aEφE + aSφS + aW φW + aNφN + b (24)

Coefficients ai can be evaluated with:

aE = De ·A(|Pee|) + max(−Fe, 0) (25)
aW = Dw ·A(|Pew|) + max(Fw, 0) (26)
aN = Dn ·A(|Pen|) + max(−Fn, 0) (27)

aS = Ds ·A(|Pes|) + max(Fs, 0) (28)

aP = aE + aW + aN + aS + ρn
P

∆x∆y

∆t
(29)

b = ρn
P

∆x∆y

∆t
φn

P + Sn+1
P ∆x∆y (30)
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where:

De = Γe∆y

(δx)e
Dw = Γw∆y

(δx)w
Dn = Γn∆x

(δy)n
Ds = Γs∆x

(δy)s

Fe = (ρu)e∆y Fw = (ρu)w∆y Fn = (ρv)n∆x Fs = (ρv)s∆x

and the Peclet number evaluated at the face of the control volume (f) is:

Pf =
Ff

Df

Numerical Scheme A(|P|)
UDS 1
CDS 1− 0.5(|P |)
HDS max(0,(1− 0.5|P |))
EDS |P |/(e|P | − 1)
PLDS max(0,(1− 0.5|P |)5)
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6 The Mesh

6.1 Spacial discretization of the domain

One of the important steps of the Finite Difference method is the spacial domain
discretization : This mean divide the domain into a finite number of control
volumes. This partition is known like Mesh and there are different ways of
do it. The three main types are: Orthogonal Structured Mesh, Adaptable No
Orthogonal Structured Mesh and Unstructured Mesh.

The choice of the proper mesh is a key factor in the numerical resolution of
CFD problems. A lot of problems can be simplify by the choice of a the right
mesh. Unstability and convergency problems can be solved as well.

6.1.1 Densification of the Mesh

To improve the simulation of some physics phenomena, is necessary the use of
special meshes, more dense that allow us more accurate results. However, it
makes no sense use a denser mesh in the whole domain if it is only needed in a
specific region.

It’s common densify the meshes in the zones with a particular interest and
in this way save computational cost. In the following image it’s possible watch
an example of the method applied in this work. (4).

Figure 4: Densification of the mesh in the
proximities of the walls.

This technique can be applied to any type of mesh, but we focus our efforts
in the orthogonal structured meshes because is a choice that have good results
in the Differential Heated Cavity Problem. The method is describe it as follows:

Imagine that you want to discretize a region of the space r like in the
Figure 5. His length is Lr and is localized at a distance xr from the origin of
the coordinates. The sides of his N control volumes are distributed following
the expression:
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Figure 5: Densification of the mesh for a particular region of the
space r.

xV C(i) = δ+
∆δ

2

[
1 + tanh

(
2kx(r)

ĩ− 1
n

− kx(r)

)
/tanh(kx(r))

]
i = ir, ir+1, . . . , ir+Nr

(31)

Where xV C(i) is the cartesian coordinate of the side of the control volume
i in the x direction; ir is the first index of the i control volumes of this region
r; kx(r) is the densification factor of the mesh for the region r in the direction
x. His value use to be between 0.5 and 1.5.

This expression allows make a symmetrical densification on both sides or
just for one of the sides.

• For a symmetrical densification: n = Nr, δ = xr, ∆δ = Lr and ĩ = i− ir

• For densify just the right side: n = 2Nr, δ = xr, ∆δ = 2Lr and ĩ = i−ir+1

• For densify just the left side: n = 2Nr, δ = xr − Lr, ∆δ = 2Lr and
ĩ = i + Nr − ir + 1

In the same way this method can be applied to the other directions y and
z.
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7 Simple algorithm

Now, that we describe the algorithm used to solve the set of linear equation
systems involved in the simulation of the problem. To achieve this we use the
iterative algorithm proposed by Patankar [Pat80] and is briefly describe it in
the following steps.

1. Data Set: This is the process in which the constants, the velocities,temperatures,pressures
maps are initializated, plus some parameters of the program like discretiza-
tion squemes, convergency numbers, dimensions of the mesh, etc.

2. Iterative Loop: In this section, at every iteration the variables U ,V and
T stay constants.

3. Numerical Resolution: The momentum equations are solved using the al-
gorithm TDMA with a Gauss-Seidel. The resolution is relaxed, obtaining
new values of U∗ and V ∗ which will be use in the following steps.

4. Pressure Correction Resolution: This step is the numerical resolution of
the pressure correction system. Obtaining the values of p′ for each node.

5. Pressure and Velocity Correction: The velocities and the pressures are
corrected in this way, p = p∗ + p′ , u = u∗ + u′, v = v∗ + v′.

6. Temperature Resolution: In the same way that the velocities, the tempera-
ture is resolved with the algorithm TDMA with a Gauss-Seidel. Obtaining
the new maps of temperatures T .

7. Finally if the algorithm converges the algorithm stops and if it not, a new
iteration is computed.

In the figure 6 is shown the flux diagram of the algorithm.
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Figure 6: Simple algorithm.
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8 Differential Heated Cavity Problem

Another Benchmark used to validate the global code is the one known as Differ-
ential Heated Cavity Problem. This case consist in the simulation of a laminar
flow inside of a square cavity where two opposite faces have different tempera-
tures. The boundary conditions are shown in the Figure.

Figure 7: Geometry of the problem

The Differential Heated Cavity is a benchmark of natural convection. The
velocity field is generated because of the gradient of the temperatures. This
case allow verify the governing equations of continuity, of conservation of mo-
mentum and the conservation of energy. Also is useful to probe the Boussinesq
hypothesis.

The problem has been adimensionalized with the following variables:

x∗ =
x

Lx
(32)

y∗ =
y

Lx
(33)

u∗ =
uLx

a
(34)

v∗ =
vLx

a
(35)

T ∗ =
T − TH

∆T
(36)

Where,
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a =
λ

ρcp

Substituting the adimensional variables in the governing equations is easily
probe that the problem depends only of the adimensional numbers of Prandtl
and Rayleigh:

Pr =
µcp

λ
(37)

Ra =
gβρ2∆TL3cp

λµ
(38)

The mesh: For the discretization of the domain has been used an orthog-
onal mesh. This mesh has been densify close to the left and right sides of the
cavity, because in that places is where the gradients of temperatures are more
strong, also the fact that the velocities are bigger, what implies that a bigger
accuracy is needed. In this way is possible get better results than with a uni-
form mesh with the same number of nodes. The results where tested on three
different meshes with different number of nodes : 23× 23, 43× 43 y 83× 83.

Figure 8: Discretization of the spacial domain with a orthogonal
mesh with symmetric densification.

For the validation of the algorithm the results were compared with the
benchmark proposed by De Vahl Davis (1983) [Dav83]. Each case were tested
with the same Prandtl number (Pr = 0, 71) and for different Rayleigh numbers,
that were obtained modifying the value of ρ
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The results compared are:

• u∗max,y∗max: Maximum value and position of the horizontal component of
the velocity u at the vertical symmetry line of the cavity.

• v∗max,x∗max: Maximum value and position of the vertical component of the
velocity v at the horizontal symmetry line of the cavity.

• Numax,y∗Numax
Maximum value and position of the local Nusselt at the

hot wall.

• Numin,y∗Numin
Minimum value and position of the local Nusselt at the

hot wall.

• Numig Average of the Nusselt number at the hot wall.

The following Figures show the numerical results obtained and the relative
error respect the Benchmark.

Ra = 103

mesh 23x23 error mesh 43x43 error mesh 83x83 error Benchmark
u∗max 0.564 0.845 0.738 0.798 0.970 0.734 3.649
y∗umax 0.922 0.134 0.910 0.119 0.892 0.097 0.813
v∗max 0.571 0.845 0.741 0.800 0.971 0.737 3.697
x∗vmax 0.922 4.178 0.910 4.111 0.892 4.012 0.178
Numax 1.081 0.282 1.099 0.270 1.124 0.253 1.505
y∗Numax

0.117 0.275 0.135 0.463 0.159 0.724 0.092

Numin 0.939 0.357 0.920 0.330 0.897 0.297 0.692
y∗Numin

0.971 0.029 0.988 0.012 0.995 0.005 1.000

Numig 1.010 0.097 1.009 0.097 1.011 0.096 1.118

Table 1: Comparison of the numerical results for a Ra = 103.

Ra = 104

mesh 23x23 error mesh 43x43 error mesh 83x83 error Benchmark
u∗max 5.307 0.672 6.811 0.579 8.532 0.473 16.178
y∗umax 0.922 0.120 0.910 0.105 0.892 0.084 0.823
v∗max 5.620 0.714 7.011 0.643 8.627 0.560 19.617
x∗vmax 0.922 6.745 0.927 6.793 0.903 6.586 0.119
Numax 1.924 0.455 2.115 0.400 2.341 0.337 3.528
y∗Numax

0.169 0.180 0.193 0.348 0.224 0.569 0.143

Numin 0.644 0.099 0.599 0.022 0.583 0.005 0.586
y∗Numin

1.000 0.000 0.998 0.002 0.999 0.001 1.000

Numig 1.271 0.433 1.351 0.398 1.453 0.352 2.243

Table 2: Comparison of the numerical results for a Ra = 104.

It can be concluded that while the mesh gets denser, the results improve,
and converge to the values of the benchmark, reducing the relative error. This
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Ra = 105

Ra = 105 mesh 23x23 error mesh 43x43 error mesh 83x83 error Benchmark
u∗max 34.403 0.009 39.635 0.141 43.265 0.246 34.730
y∗umax 0.922 0.078 0.910 0.064 0.922 0.078 0.855
v∗max 43.320 0.368 46.032 0.329 48.313 0.296 68.590
x∗vmax 0.950 13.398 0.955 13.470 0.951 13.412 0.066
Numax 5.781 0.251 5.821 0.246 5.920 0.233 7.717
y∗Numax

0.169 1.083 0.227 1.807 0.243 2.002 0.081

Numin 0.802 0.100 0.801 0.099 0.806 0.106 0.729
y∗Numin

1.000 0.000 0.998 0.002 1.000 0.000 1.000

Numig 3.280 0.274 3.332 0.263 3.355 0.258 4.519

Table 3: Comparison of the numerical results for a Ra = 105.

Ra = 106

mesh 23x23 error mesh 43x43 error mesh 83x83 error Benchmark
u∗max 71.100 0.100 66.950 0.036 65.735 0.017 64.630
y∗umax 0.883 0.038 0.865 0.018 0.855 0.006 0.850
v∗max 214.275 0.023 219.048 0.001 220.103 0.003 219.360
x∗vmax 0.029 0.234 0.034 0.097 0.037 0.017 0.038
Numax 17.420 0.028 17.594 0.018 17.526 0.022 17.925
y∗Numax

0.050 0.309 0.045 0.184 0.037 0.017 0.038

Numin 1.273 0.288 1.145 0.158 1.064 0.076 0.989
y∗Numin

0.971 0.029 0.988 0.012 0.997 0.003 1.000

Numig 8.723 0.009 8.863 0.007 8.922 0.014 8.800

Table 4: Comparison of the numerical results for a Ra = 106.

proofs that the algorithm works for this kind of problems, but some errors
are found for the case Ra = 105, and probably are caused for a oscillatory
convergence.

The next images show the distribution of temperatures for each one of the
simulated cases. The following pictures show the coupling existing between the
equations of conservation of momentum and the equation of conservation of
energy. As the Rayleigh number increases, the velocities and the temperature
gradient increase as well. This is produced because of the contribution of the
Boussinesq term that become more important with high Rayleigh numbers.

In the cases with lower Rayleigh numbers the diffusion is more important
than the convection, but while this number increases, the convection start get-
ting more importance and the temperature distribution get stratified. This has
as result that the gradient for temperatures increases at the walls and so the
Nusselt number.

The flow lines are shown for the different cases resolved. It can be seen the
evolution of the flow as the number Rayleigh increases and the coupling between
temperatures and velocities.
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Figure 9: Temperatures distribu-
tion T ∗ for a Ra = 103.

Figure 10: Temperatures distri-
bution T ∗ for aRa = 104.

Figure 11: Temperatures distri-
bution T ∗ for a Ra = 105.

Figure 12: Temperatures distri-
bution T ∗ for a Ra = 106.

Figure 13: Flow lines for a Ra =
103.

Figure 14: Flow lines for a Ra =
104.

Even if the errors increases for the case (Ra = 105), the algorithm can
simulate the physics of the problem. In the following images it can be shown
the evolution of the temperatures flows. The different temperatures at each
side wall of the cavity produces a heat flow and this flow produces a convective
movement in the fluid inside the cavity. Which totally fits with the expected
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Figure 15: Flow lines for a Ra =
105.

Figure 16: Flow lines for a Ra =
106.

behavior.

Figure 17: Differential Heated
cavity. Initial Temperature dis-
tribution.

Figure 18: Differential Heated
cavity. Iteration 25.

Figure 19: Differential Heated
cavity. Iteration 50.

Figure 20: Differential Heated
cavity. Iteration 75.
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Figure 21: Differential Heated
cavity. Iteration 100.

Figure 22: Differential Heated
cavity. Iteration 200.

Figure 23: Differential Heated
cavity. Iteration 400.

Figure 24: Differential Heated
cavity. Iteration 800.

Figure 25: Differential Heated
cavity. Iteration 1000.

Figure 26: Differential Heated
cavity. Iteration 1200.
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8.1 Conclusions and Future Work

The CFD methods are a primary tool in the engineering and in the research
world. The CFD problems are presents all around the world, sometimes in the
most common things, like the design of radiators, design of cars or the design
of airplanes.

This work was focused in the testing of different discretization squemes,
concluding that the Central Difference Squeme present some convergency prob-
lems for high Peclet numbers.

Also where tested different mesh methods, obtaining better results with a
mesh more dense at the sides of the cavity, however this depends on the problem,
and a proper choose of the mesh can improve the results.

The experiments probe that the simple algorithm is useful to resolve prob-
lems with simple geometry and also the simulations results were agree with the
theoretical physic behavior.

The numerical resolution on problems of Heat Transfer and Fluid Dynamics
is a field that constantly evolve. Every year new methods appear and in that
way is possible resolve new and more difficult problems.

It will be very interesting add new features at the code developed. In
particular, some precision problems has been detected, and the use of new tools
could be fix them. The use of high order squemes can be useful to improve the
simulation.

How ever, the most important work by now will be adapt the code, taking
advantage of the parallel computing and in that way improve the quality of the
solutions obtained. It is important too, test the code for other kind of problems,
with a more practical view.
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[Seg97] C. D. Pérez Segarra. Topics on fluid mechanics heat transfer mathe-
matical formulation (ii). diferential formulation. Centre Tecnològic de
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