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Introduction

My supervisors at the LMM5 and I discussed at the beginning of the fellowship
about the advantages of assisting to some courses that were going to be given
by the department during the fist four months. The experience would be quite
useful for the second stage of the fellowship: the five-months research. I assisted
to several courses including: Introduction to hydrodynamics instabilities, Multi-scale
phenomena in hydrodynamics, Introduction to numerical methods in fluid mechanics,
Multi-phase flows: drop and bubbles dynamics, Compressible flows instabilities, Suspen-
sions and diphasic flows, Vortex in hydrodynamics, Open flow instabilities and Control
flow. The courses were dictated at the University Campus at Jussieu and some of
them at the École Polytechnique at Lozère.

This report is focused on the research of the second part of the fellowship. I
joined the drops and bubbles group led by Stéphane Zaleski. The group meetings
with the Department members and other foreign visitors were quite useful in
the development of this work. Every week, I had to show the advances of my
research where my procedures and results were discussed.

The generation of drops has been a topic of great interest since a long time ago
between physicists. The process is fascinating complicate. The first successful
explanation of the physics that produces the breakup of a free surface flow into
drops was done by Laplace in 1805 when he identified the surface tension as the
responsible of the instability that carries out the process. In 1879, Rayleigh no-
ticed that surface tension should work against inertia. By a simple linear stability
analysis, he found that a fluid cylinder was unstable to small perturbations of
its shape finding an optimal perturbation wavelength of about nine times the ra-
dius of the cylinder. The cylinder then should break up into drops of a typical
size given by this wavelength. His results were confirmed by him with great
success.

However, Rayleigh’s theory was not able to predict other related phenomena
such as satellite drops in breakups. A hundred years passed until the nonlinear

5Laboratoire de Modélisation en Mécanique
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Figure 1: Water splash crown. A thick rim is formed at the edge of the crown
and fingers of fluid are ejected from it. From the fingers, drops are ejected to the
surrounding air. Public access photograph at FlickrTM

theories boost gave to the problem new tools for understanding the process near
the breakup. The first attempt was done by the lubrication theory or shallow-water
approximation. Using this equations, Eggers and Dupont in 1994[2] showed that
an axisymmetrical jet may contract radially reaching zero in finite time without
considering any microscopic process.

The goal of our research was to investigate the nature of the process which
occurs in a two-dimensional liquid viscous sheet that retracts by the action of
surface tension. Until now, the research has mainly consisted in numerical sim-
ulations and here we have tried to develop some analytical tools to give asymp-
totic behavior of the solutions. Curiously, the whole problem is controlled by just
one parameter consisting in the rate between viscous and surface tension forces
and it should be linked directly to the eventual breakup criterion. Understand-
ing well this subject could help to solve a lot of more complicated phenomena as
the splash crown where a cylindrical sheet is ejected upward. A fingering process
takes place there. From the tips of this fingers, drops can be ejected following
the axisymmetrical pinch-off. Other phenomena, such as growing holes in sheets
which are very important in the industry of curtain coating, may be also better
understood.

The plan of the work is the following: Chapter I gives a brief theoretical intro-
duction to the topic. The second one consists in the main analysis of the research,
the study of the lubrication equations when describing retracting sheets. The
third one is addressed to some numerical simulations we have done and the re-
sults discussion.



Chapter 1

Dynamics of free surface 2-D
fluid sheets

In this chapter we give a brief overview of the dynamics of thin two-dimensional
fluid sheets bounded by free surfaces. These sheets may have a free edge. We
consider first the theoretical results for the speed at which the edge moves. Then
we will study the motion of unbounded 2-D sheets by linear analysis, paying
special attention to varicose modes. Finally, we will review the expansion of
Navier-Stokes equations for long wavelength perturbations that leads to lubrica-
tion equations.

1.1 The Taylor-Culick velocity

Thin sheets of fluid that have a free edge retract because of surface tension. When
they retract, their edges grow as they collect mass from the sheet forming a thick
rim. Using very simple arguments, Taylor and Culick in 1959[9] found indepen-
dently that the velocity at which the edge of a 2-D fluid sheet moves into it is
constant.

The rim retracts at a constant speed,

crim =
√

σ

ρe
, (1.1)

and the result is absolutely independent of viscosity. However, viscosity should
play a role in some manner. This would be discussed further.

4
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y=h+(x,t)

y=h-(x,t)

y

x

Figure 1.1: Thin 2-D fluid sheet scheme: the interfaces h+(x, t) and h−(x, t) are
considered as free surfaces. The length scale of the problem is e, the mean value
of the width of the 2-D fluid sheet , shown as a dashed line.

1.2 Navier-Stokes equations for a 2-D fluid sheet

We consider a viscous liquid two-dimensional fluid sheet immersed in a gas with
a density low enough to consider the boundaries as free surfaces. The 2-D fluid
sheet is thick enough as well to apply continuum mechanics. The problem is
governed by the 2-D Navier-Stokes and the incompressibility equations.

The system of equations can be rescaled in the following way: the lengths
as x, y, h ∼ e; the time as t ∼ e2/ν; the velocities as u, v ∼ ν/e and finally the
pressure as P ∼ ρν2/e2. We have defined 2e as the mean thickness of the 2-D fluid
sheet. The rescaling drops all the physical parameter leaving a non-dimensional
system. The whole system is controlled by just one dimensionless parameter Z
defined as,

Z2 =
ρν2

σe
, (1.2)

known as Ohnesorge’s number. This parameter represents the ratio between the
viscous and surface tension forces in a characteristic length of the 2-D fluid sheet.

Our final non-dimensional set of nonlinear partial differential equations is
given by,

∂tu + u∂xu + v∂yu = −∂xp + (∂xxu + ∂yyu) , (1.3a)
∂tv + u∂xv + v∂yv = −∂yp + (∂xxv + ∂yyv) , (1.3b)

∂xu + ∂yv = 0. (1.3c)
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and the three of the following boundary conditions at y = h(x, t) and the fourth
at y = 0,

v = ∂th + u∂xh , (1.4a)

∂yu + ∂xv = 2
∂xh (∂yv − ∂xu)

(1 + ∂xh2)
, (1.4b)

−p + 2

(
1− ∂xh2

)
∂yv − ∂xh (∂yu + ∂xv)
1 + ∂xh2

= Z−2 ∂xxh

(1 + ∂xh2)
3
2

, (1.4c)

∂yu = v = 0. (1.4d)

where we have added symmetry across the y-axis. We have not considered in the
previous equations microscopic forces like those studied by Van der Waals.

1.2.1 Waves in uniform sheets

How does the system react when small perturbations are applied? It is well
known that capillarity waves appear. On the other hand, the effect of viscos-
ity is just to dissipate energy. We found the exact solution and the properties of
this waves in the case of varicose modes. Our calculation is similar to Lamb’s
1932[4] calculation for shallow water waves.

For this purpose, we study the perturbations of an unbounded sheet at rest
of thickness 2e. This can be written in the non-dimensional variables as,

u(x, y, t) = εu1(x, y, t),
v(x, y, t) = εv1(x, y, t),
p(x, y, t) = εp1(x, y, t),

h(x, t) = 1 + εh1(x, t).

It is quite useful to rewrite the system in terms of the velocity potential ϕ(x, y, t)
and the stream function ψ(x, y, t),

u1 = −∂xϕ1 − ∂yψ1, (1.5a)
v1 = −∂yϕ1 + ∂xψ1. (1.5b)

The solutions of the resulting system of equations are now given by,

ϕ1(x, y, t) = (Aeky + Be−ky)eikx+st,

ψ1(x, y, t) = (Ceqy + De−qy)eikx+st,

where q2−k2 = s from the Navier-Stokes equations. Here the y-symmetry elimi-
nates quickly the number of constants to two and cosh and sinh appear naturally
in the solution. Replacing this expressions in the other three boundary conditions
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should gives us the dispersion relation of varicose modes over the sheet. This is
equivalent to impose the determinant equal to zero,

∣∣∣∣∣∣

−k ik −s
2ik2 2k2 + s 0

−(2k2 + s) coth k 2iqk coth q Z−2k2

∣∣∣∣∣∣
= 0.

The dispersion relation has an interesting limit for long-wave perturbations,
or equivalently k → 0. Using that limx→0+ cothx = x−1, we can write,

Z−2k4 + (2k2 + slw)2 = 4k4

and this equation has two roots,

slw(k) = −2k2

(
1±

√
1− 1

4Z2

)
.

The real part of s(k) will always be negative. However, the existence of an imag-
inary part depends on the Ohnesorge’s number. If Z ≥ 1

2 , the two roots are
negative and real while for Z < 1

2 , the two roots are complex with a negative real
part as well. When Z is very small, we can obtain the limit of inviscid capillary
waves,

slw(k) = −2k2

(
1± i

1
2Z

)
.

Therefore, the velocity at which the long waves propagate is independent of the
viscosity,

clw =
√

σe

ρ
k (1.6)

There is an other interesting limit for short waves. In this case, k → 0 and
now we can use limx→∞+ cothx = 1. Using that s ∼ k, we find the following
expression to the first order,

Z−2k4 + (2k2 + ssw)2 = 4k4
(
1 +

ssw

2k2

)
,

and ssw can be easily found,

ssw(k) = − k

2Z2
.

This shows that all short waves are damped and the rate at which this occurs
depends inversely on the Ohnesorge number. Moreover, no travelling waves
exist in this limit as the root is strictly real.

We can confirm that for any Ohnesorge number, all the oscillations are damped,
those of smaller wavelength in a more effective way. As the Ohnesorge number
grows, the oscillations need more time to be damped as viscosity decelerates the
process. In the long wave an small Ohnesorge’s number limit, the waves are
very-weakly damped while in the short wave limit, they are damped with a rate
inversely proportional to the Ohnesorge number.
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1.3 The long-wave theory

Erneux and Davis found in 1993[3] a set of coupled equations for long-wave per-
turbations in 2-D fluid sheets. They started from the Navier-Stokes equations and
the free-surface boundary conditions at the interfaces. They made an asymptotic
expansion of the system using the wave-number as small parameter obtaining as
result a set of two coupled nonlinear equations that involve the thickness of the
fluid sheet and its horizontal velocity. The set of equations have been commonly
used when studying this kind of fluid sheets, e. g. linear stability theory, Erneux
and Davis 1993[3].

The long-wave theory consists in expanding equations (1.3) and (1.4) using
the following scalings,

ξ = kx, ψ = y, τ = k2t
U = k−1u, V = k−2v, P = k−2p

H = h, Z = Z
(1.7)

where k is defined as a dimensionless wave-number and will be used as the small
parameter. The system admits an expansion in terms of this parameter of the
following form,

(U, V, P ) = (U0, V0, P0) + k2 (U1, V1, P1) + .... (1.8)

Replacing this expansion in our set of equations leads to a sequence of problems
after equating similar powers of k. The two first orders give us the following set
of equations known as lubrication equations,

∂th + ∂x(hu) = 0 (1.9a)
h∂tu + hu∂xu = 4∂x(h∂xu) + Z−2h∂xxxh (1.9b)

or in the physical variables,

∂th + ∂x(hu) = 0, (1.10a)

h∂tu + hu∂xu = 4ν∂x(h∂xu) +
σ

ρ
h∂xxxh, (1.10b)

It is remarkable than the viscous term includes an extra coefficient 4h with respect
to usual Navier-Stokes equations called Trouton viscosity. The factor 4 is fairly the
ratio of the elongational to the shear viscosity for viscous flows.



Chapter 2

Asymptotic solution for a
retracting 2-D fluid sheet

In this chapter, we try to look for solutions of the problem of a fluid sheet that
retracts by the action of surface tension. To achieve this, we use the lubrication
equations introduced in Chapter 2 that may describe in a simpler way the dy-
namics of the fluid sheet.

2.1 Asymptotic travelling wave solutions far from the rim

The goal of the analysis was to look for solutions of the lubrication equations
that travel with constant speed. The long-wave limit lubrication equations were
found by Erneux and Davis 1993[3]. The equations used here include the com-
plete curvature term as Brenner and Gueyffier 1990[1] introduced it following
successful numerical results obtained by Eggers and Dupont 1994[2] for axisym-
metrical jets. These solutions may represent the behavior far from the edge as
time goes to infinity.

2.1.1 Leading order travelling waves solutions

The set of equations that describes the thickness and the horizontal velocity of
the fluid sheet was found in Chapter 1,

∂th + ∂x(hu) = 0, (2.1a)

h∂tu + hu∂xu = 4ν∂x(h∂xu) +
σ

ρ
h∂x

(
∂xxh√

1 + ∂xh23

)
, (2.1b)

but now we have included the curvature correction as Brenner and Gueyffier did
it in 1990[1]. The two boundary conditions, h = e and u = 0 at x → ∞. We look

9
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for solutions that translates with velocity c as,

{
h(x, t) = htw(z, τ),
u(x, t) = utw(z, τ),

z = x− ct,
τ = t.

(2.2)

Navier-Stokes equations and lubrication equations are invariant under Galilean
transformations, so from here, we will place ourselves in an inertial frame of
reference travelling at speed c. The equations then are the same but with the
new boundary conditions h = e and u = −c at z → ∞. We will try to make an
asymptotic expansion of the solution of this equation when t →∞ of the form,

htw(z, τ) =
∞∑

n=0

τ−nhtwn(z), utw(z, τ) =
∞∑

n=0

τ−nutwn(z). (2.3)

The leading order when replacing expresions (2.15) in equations (2.1) leads us to
one single nonlinear equation given by,

c2e2

(
1

htw0

− 1
e

)
= 4νce

(
∂zhtw0

htw0

)
+

σ

ρ


1 + ∂zh

2
tw0

+ htw0∂zzhtw0√
1 + ∂zh2

tw0

3


− σ

ρ
. (2.4)

In this equation, there are two terms that may be cancelled for a given value of
the velocity c. These two terms which do not depend on htw0(z) —the second
term in the left hand side and the last term in the right hand side— represent
respectively the flux of momentum into the fluid and the surface tension pull
force both at infinity. If we balance these two terms, we find a value for c,

c =
√

σ

eρ
, (2.5)

which is the result of Taylor 1959[9] and Culick 1960 for the velocity at which
a fluid sheet retracts using momentum conservation arguments. Replacing this
result in the equation and after making it dimensionless by the following rules
h ∼ e, z ∼ e and considering the dimensionless parameter defined in (1.2), we
obtain the following second ordinary differential equation which just depends
on the Ohnesorge number:

−1− 4Z∂zhtw0

htw0

+
1 + ∂zh

2
tw0

+ htw0∂zzhtw0√
1 + ∂zh2

tw0

3 = 0, (2.6)

with the boundary condition htw0(∞) → 1 and ∂zhtw0(∞) → 0.
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2.1.2 The z →∞ limit

Equation (2.6) has an attractor at htw0 = 1 as z approaches ∞. It would be useful
to look for perturbations near the stable point htw0 = 1. Replacing htw0(z) =
1 + εh̃tw0(z) leads us to the following linear equation:

∂zzh̃tw0 + 4Z∂zh̃tw0 + h̃tw0 = 0. (2.7)

We try solutions of the form h̃tw0(z) = eqz . This can let us find the characteristic
shape of the solutions where the typical scale of length is now given by,

q = −2Z±
√

4Z2 − 1. (2.8)

From here, we can see that for Z > Zc = 1
2 , the solutions decay monotonically

while for Z < Zc the solutions oscillate while they decay.
In the large Ohnesorge number limit, we obtain two scales, a very fast one:

q = −4Z and a slow one q = −(4Z)−1 as the exact limit solution found by
Sünderhauf, Raszillier and Durst 2002[8]. On the other hand, in the limit of small
Ohnesorge’s number, we obtain q = −2Z ± i. Here the wavelength oscillation
does not depend anymore on the Ohnesorge number. The parameter just con-
trols the scale of the exponential envelope of the oscillations. The wavelengths of
the oscillations in this case λ = 2πe seem to be in agreement with the complete
Navier-Stokes Simulations performed by Song and Tryggvason 1998[7].

2.1.3 The flow phase field plot and whole domain solutions

The equation that we have obtained is autonomous so a flow phase field plot
(see Fig. 2.1) may help us to study the behavior of its solutions. Autonomous
ordinary differential equations are also invariant under translations. If htw0(z) is
solution of the equation then htw0(z − z0) ∀z0 is also solution.

The field plot near the stable point (htw0 , ∂zhtw0) = (1, 0) shows that there is
a well defined trajectory around it. Zooming out, the field plots shows the solu-
tions may come from ∂zhtw0 = ±∞. Moreover, they show that these derivative
divergencies occur for z finite. However, there is a parabolic-like solution that
acts as a separatrix between these behaviors which is well defined for all z.

The asymptotic behavior of the derivative-divergent solutions is obtained by
the following balance in the equation as htw0 → C0 and ∂zhtw0 → ±∞, that leads
to a solution,

htw0(z) ∼ C0 ±
(

9C2
0

32Z

) 1
3

(z − z0)
2
3 . (2.9)

On the other hand, another balance is possible when ∂zhtw0 À (4Z)−1, leading to

−htw0∂zhtw0

√
C1 +

8
3
Zh−3

tw0
= 1.
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Figure 2.1: Field plots showing the behavior near the stable point and at a large
scale for Z = 0.1. Only some of the solutions whose derivatives go to ∂zhtw0 →
+∞ as z → −∞ are shown. We can notice the formation of the envelope when
we approach the stable point.

The behavior of the solution can be divided in two parts. An inner core when
htw0 ¿ 3

√
8Z/3C1. This is led by the left branch of the parabola,

htw0(z) ∼ 3
32Z

(z − z0)2. (2.10)

This fist solution is the separatrix on the plane z—htw0 between the derivative-
divergent solutions. In the physical space, it appears as an envelope between
these two kinds of solutions as it is shown in Fig. 2.2. The derivative-divergent
solutions have been appropriately translated to fit in the envelope.

This envelope solution develops a tail in the positive direction as z → ∞
whose shape remains invariant by changing the boundary condition. Its shape is
merely determined as it has seen before in section 2.1.2 by the parameter Z.

On the other hand, the outer core does depend in the constant of integration
C1. In the region htw0 À 3

√
8Z/3C1, is led by,

htw0(z) ∼
(

4
C1

) 1
4 √

z0 − z, (2.11)

and gives us the asymptotic shape of the function when returning to ∂zhtw0 =
0. This can be seen in Fig. 2.1 where they appear as a zone where the function
resembles the curve ∂zhtw0 ∼ −1/htw0 . This zone seem to be very important
when performing the matching with the self-similar part.
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Figure 2.2: Set of solutions showing the shape of the envelope with different
boundary conditions s at Z = 10. The left side of the solutions show the appear-
ance of the derivative singularity.

There is another interesting limit of equations when htw0 À 1, which gives
us,

htw0(z) ∼
√

C2 − (z − z0)
2, (2.12)

which corresponds to a circle and is independent of the Ohnesorge number. This
solution is the continuation of the function found at (2.11) and the again the con-
stants do not affect the solution when z →∞.

2.2 Asymptotic self-similar solutions for the growing rim

After studying the travelling wave solutions that could describe the shape of the
fluid sheet far from the rim, we proceed to study solutions that show self-similar
behavior as those found by numerical simulations of the complete Navier-Stokes
equations (Song and Tryggvason 1998[7]).

Both complete Navier-Stokes equations and lubrication equations show that
there exists solutions that become self-similar as t → ∞. This appears as a slow
time dependence in the equations after replacing the self-similar variables. In
both cases, this is achieved by:

{
h(x, t) = t

1
2 hss(ξ, τ),

u(x, t) = t−
1
2 uss(ξ, τ),

ξ = xt−
1
2 ,

τ = t,
(2.13)

where the following rescalings have already been made: x ∼ e, h ∼ e, t ∼ e
c and

u ∼ c.
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2.2.1 Leading order self-similar solutions

The set of transformations (2.13) applied to lubrication equations (2.1), leads us
to the following set of coupled equations,




τ∂τhss + 1
2hss − 1

2ξ∂ξhss + ∂ξ(hssuss) = 0

τ∂τuss − 1
2uss − 1

2ξ∂ξuss + uss∂ξuss − 4Z
hss

∂ξ(hss∂ξuss) = τ
1
2 ∂ξ

(
∂ξξhss√
1+∂ξh2

ss

3

)
.

(2.14)
The solution of this equations may admit a series expansion when t → ∞ in
powers of t−

1
2 ,

hss(ξ, τ) =
∞∑

n=0

τ−
n
2 hssn/2

(ξ), uss(ξ, τ) =
∞∑

n=0

τ−
n
2 ussn/2

(ξ). (2.15)

When replacing this, we obtain a set of ordinary differential equations for the
leading order and subsequent linear sets for higher orders. The leading order set
of equations is invariant under the two following transformations hss0 → Rhss0 ,
uss0 → uss0 , ξ → ξ/R, and ξ → ξ − ξ0, uss0 → uss0 + ξ0/2. The solutions are given
by,

hss0(ξ) =
√

1− ξ2 (2.16a)

uss0(ξ) = −1
4

(
π + 2 arcsin ξ√

1− ξ2

)
(2.16b)

Turning back to the physical variables, we have obtained the leading order
expansion for the growing rim,

hss0(z) =

√
R2t−

(
z −

√
tz∗0

)2
(2.17)

The value of R can be found by conservation of mass principle. The growing rim
must support the flux of fluid coming from infinity, so we have,

R =

√
2
π

. (2.18)

2.3 The intermediate matching region

We have already found leading order expressions for the unperturbed region and
the growing rim of the fluid sheet. In the first case, we had found that there was
a parabolic envelope near the solution that could support any function coming
from htw0 → ∞. In the second case we have found circular solutions, whose
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asymptotic behavior corresponds to a square root as we approach hss0 → 0. Then,
the matching region should satisfy the following limits,

hm(h → 1) ∼ 3
32Z

(z − z0)2, (2.19a)

hm(h →∞) ∼ t
1
4

√
−2R(z − (z∗0 + R)t

1
2 ). (2.19b)

There must exist a new intermediate scaling of variables, between those we have
already found, whose leading order satisfies this limits. The scaling would be
attained when doing the proper balance in lubrication equations. In fact, we
have already found in section 2.1.3 that the balance is given between the surface
tension and the viscosity terms. The scaling that achieves this, is given by,

{
h(x, t) = t

1
3 hm(ζ, τ),

u(x, t) = t−
1
3 um(ζ, τ),

ζ = xt−
1
6 ,

τ = t,
(2.20)

Replacing this new scalings in the lubrication equations leads us to,




τ
1
6 ∂τhm + τ−

1
2

(
1
3hm − 1

6ζ∂ζhm

)
+ ∂ζ(hmum) = 0,

τ
2
3 ∂τum − τ−

2
3

(
1
3um + 1

6ζ∂ζum

)
+ τ−

1
6 um∂ζum = 4Z

hm
∂ζ(hm∂ζuss) + ..

τ
1
2 ∂ζ

(
∂ζζhm√

1+τ
1
3 ∂ζh2

m

3

)
.

(2.21)
Again, we will try an expansion now in powers of t−

1
6 ,

hm(ζ, τ) =
∞∑

n=0

τ−
n
6 hmn/6

(ζ), um(ζ, τ) =
∞∑

n=0

τ−
n
6 umn/6

(ζ), (2.22)

the leading order can be simplified into the following equation

−4Z
(

∂ζhm0

hm0

)
=

∂ζζhm0 + ∂ζh
2
m0√

∂ζh2
m0

3 .

The properties of this equation were already studied in section 2.1.3. Its solution
is given implicitly by,

−
∫

hm0

√
B2

1 +
8Z
3

h−3
m0 dhm0 = ζ −B2. (2.23)

2.4 The whole domain matched solution

The constants B1 and B2 remain to be fixed by a matching between the other
regions. In the limit hm0 →∞, the asymptotic expansion of equation (2.23) is,

−1
2
B1h

2
m0
−

(
24Z2

B1

) 1
3
∫ 1

0

ds√
3s4 − 3s2 + 1

+O(h−1
m0

) = ζ −B2
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The other relevant expansion when hm0 → 0 is given by,

(
32Z
3

) 1
2

h
1
2
m0 −

(
3

392Z

) 1
2

B2
1h

7
2
m0 +O(h

11
2

m0) = ζ −B2.

Turning back to the physical plane, for the leading orders, we have,

−1
2
B1t

− 2
3 h2 = t−

1
6 z −B2, (2.24a)

(
32Z
3

) 1
2

t−
1
6 h

1
2 = t−

1
6 z −B2. (2.24b)

The matching will allow us to fix the constants. The last expression shows that
the matching with the fluid sheet is guaranteed when B2 = 0. For the outer
region, we need to match (2.24a) with (2.19b). The constants are then,

B1 = R−1, B2 = 0. (2.25)

Moreover, is necessary also that z∗0 = −R. With this, we can construct a the lead-
ing order solution for the whole domain. We express it as an explicit combination
of the travelling wave, the self-similar and the intermediate solutions,

h(z, t) = htw0(z−z0)+t
1
3 hm0

(
z

t
1
6

)
+t

1
2 hss0

(
z

t
1
2

)
−H(−z)

(
3

32Z
z2 + t

1
4 (−2Rz)

1
2

)
,

(2.26)
where H(z) is the Heaviside function1.

The general matching scheme is shown in Fig. 2.3. The intermediate and the
travelling wave region and can be seen as double boundary layers shrinking with
time when viewed from the self-similar reference frame.

Even we had found this asymptotic time-dependant whole domain solution,
we do not have an analytical solution for the travelling-wave region. In order to
obtain a view of the result, we need to find a method that fixes the last constant of
the matching z0. This is not an easy task and we have determined it numerically.

The strategy is to start integrating numerically the travelling wave equation
downward from an initial condition that coincides with the asymptotic shape of
the parabola centered at the origin. Even we start with this initial condition, this
is not a guarantee that our constant z0 is zero because h ∼ z2 is just the leading
order and we may have other orders that are not convergent like h ∼ z. More-
over, there is also a tail of zero order. After fixing this, we can adjust z0 in such a
way that the order z1 falls to zero. To achieve this, we had calculated a difference
between the original parabola and the numerical solution which should give us,

htw0(z)− 3
32Z

z2 =
3

32Z
(z − z0)2 − 3

32Z
z2 ∼

(
− 3z0

16Z

)
z.

1We have included as the matching limit shape is just the left branch of the parabola.
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Figure 2.3: Matching scheme showing the different regions of the problem: the
circular self-similar solution, the travelling wave solution far from the rim and
the intermediate region which links them.

Then the final initial condition can be calculated finding the slope of the dif-
ference between this two curves. This was performed by a linear fit by a least-
square method. However, it is necessary to look for a region where the difference
between these two functions tends to a straight line.

Once z0 has been fixed, the whole domain solution can be found as it is shown
in Fig. 2.4 which show the evolution of time of the solution.

2.4.1 Convergence of the matched solutions

There are two small tails of order zero for the matching limits of the functions
used when finding the whole domain solution. The matching between the grow-
ing rim and the intermediate region has a tail given by,

Bss−m =
(
24R−1Z2

) 1
3

∫ 1

0

ds√
3s4 − 3s2 + 1

t
1
4 ∼ Z

2
3 t

1
4 . (2.27)

On the other hand, the tail associated to the matching limit of the intermediate
and unperturbed region seems to be proportional to the inverse of Ohnesorge’s
number,

Bm−tw ∼ Z−1. (2.28)

Both tails should be much smaller than the typical size of the rim t
1
2 . This condi-

tion gives us the following convergence criteria,

Z
2
3 t

1
4 ,Z−1 ¿ t

1
2
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Figure 2.4: Time evolution of the matched solutions at Z = 1 and Z = 0.1 between
τ = 103 to 104 and τ = 105 to 106 respectively.

or in terms of t,
t À Z−2, Z

8
3 , (2.29)

which means that this kind of solution is reached for two different time scales de-
pending on the Ohnesorge number. For large Ohnesorge’s number, this solution
is valid when time is much greater than the eight thirds power of Z, while for low
Ohnesorge’s number, we will have to wait until the time is much greater than the
inverse of the square of Z. This results seem to be qualitatively in accord with
numerical simulations where larger Ohnesorge numbers played the role of de-
laying the convergence to the Taylor-Culick velocity. For low Ohnesorge’s num-
bers, where the Taylor-Culick velocity is reached quickly, these criteria could be
related to the existence of other regimes with different scalings. This would lead
us to a different behavior before arriving to the Z−2 time scale whose solutions
have been obtained. In the latter case, a balance between inertial forces, instead
of viscous ones, and surface tension shall be the correct one.



Chapter 3

Numerical simulations

In this chapter, we deal with the numerical simulations we have performed for
the problem of the free-surface bounded retracting sheet of fluid. The simula-
tions were done with the Gerris flow solver. We give a concise overview of the
numerical and computational methods used by this solver.

3.1 The Gerris flow solver

The Gerris flow solver was developed by Stéphane Popinet and supported by
the NIWA1 and by the Marsden Fund of the RSNZ2. It is an open source free
software written in C and uses object-oriented programming and the GLib and
GTS libraries for the geometrical functions.

Spatial discretization

The spatial domain is discretized in squares organized hierarchically as a quadtree.
This means that each cell may be the parent of four children cells. The level of a
cell is defined as the number of ascendants it has as it is shown in Fig. 3.1.

The quadtree representation has been used as it has enormous advantages
when dealing with the access of the data, e.g. efficient access to neighboring cells,
cell level and spatial coordinates and efficient traversal of the leaf cells, same
level cells and mixed cells.

Temporal discretization

The temporal discretization follows the classical fractional step projection method.
At any given time n, the velocity field Un and the fractional step pressure pn−1/2

1National Institute of Water and Atmospheric research
2Royal Society of New Zealand
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4
3

2

1

0

Figure 3.1: Quadtree representation. When the refinement is done, four children
cells are created from a parent cell. The access to the data is the main advantage
of using a quad tree structure.

are known at each cell center. Then a provisional value for the velocity U∗ can
be calculated integrating the Navier-Stokes equation in time assuming that the
pressure is zero. The velocity field Un and the pressure pn+1/2 then may be com-
puted by enforcing the incompressibility condition. This leads to the Poisson
equation solving problem. The Poisson equation is discretized following then a
linear problem that is solved through iterative methods using a relaxation oper-
ator.

Adaptive mesh refinement

When a tree-based structure is used, the refinement is not hard. The strategy that
Gerris uses consists in two steps. First, any cell that satisfies a given criterion
is refined bearing new children cells. In the second step, all the parent cells are
checked. If any of them does not satisfy the refinement criterion, its children are
killed and then the grid is coarsened.

The preset refinement criterion that Gerris uses is based on the vorticity field.
If a cell matches, h||U||

max ||U|| > θthr, the cell is refined. We can depict the threshold
θthr as the maximum angular deflection of a fluid particle that crosses a cell at a
speed equal to the maximum over the whole domain.

Volume of fluid method

There are several ways of representing an interface in computational fluid dy-
namics. The numerical methods to achieve this can be explicit or implicit. In the
former case, the interface is advected using a separate mesh for it that should be
deformed and refined during the whole motion. In the latter, we use a fixed grid
and a phase function that indicates in which phase we are at a given location.
The interface can be constructed in terms of the zones of rapid variation of the
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Figure 3.2: In the PLIC method, the interface is reconstructed with a piecewise
linear function. Even a matching in the faces of the cell is not guaranteed, the
discontinuities are very small.

phase function. The phase function can be advected with the fluid particles and
the motion of the interface is then implicitly found.

The Volume Of Fluid or VOF technique is an implicit method that works with
a discrete version of the phase function named color function. In the whole fluid,
the color function has a monotone value (either one or zero) except in the cells
crossed by the interface where the color function has a fractional value.

There are several methods for reconstructing the interface from this data. In
the PLIC3 method, the local shape of the interface is constructed with the dis-
cretized gradient of the color function and the volume fraction itself. This con-
struction method does not satisfy the continuity of the interface in the face cells
but the discontinuity is usually of order O(h2) (see Fig. 3.2).

The second step of the VOF method deals with the advection of the interface.
Once the shape of the interface is known, it is necessary to compute the amount
of fluid exchanged between neighboring cells.

3.2 Specific numerical procedure details

This section is addressed to the details of the specific problem of the retracting
fluid sheet.

We have chosen a rectangular spatial domain consisting of 3x1. The initial
refinement level is 9. This means an initial mesh of 1536x512 points. For conserv-
ing resolution in the interface, another refinement criterion has been added to the
typical vorticity refinement algorithm: when the phase has a value bigger than
zero and smaller than one, the surround is refined. This assures a good resolution
in the cells crossed by the interface.

The boundary and the initial conditions in the domain have been fixed as fol-
lows. The sheet occupies the bottom region taking advantage of the y-symmetry.

3Piecewise Linear Interface Calculation
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The initial sheet consists of a planar sheet with circular tip with radius equal
to the half of the sheet thickness. In the left boundary of the domain Neumann
boundary conditions are imposed to the velocity field and Dirichlet’s for the pres-
sure. In the right boundary, Dirichlet’s for the velocity field and Neumann condi-
tion for the pressure. Imposing a fluid incoming at the right is equivalent to place
ourselves in a reference frame that moves with the speed at which the fluid en-
ters. Choosing adequately this speed equal to the Taylor-Culick velocity is quite
helpful as our sheet would remain inside our simulation domain.

A passive gas surrounds the sheet. We have chosen a density ratio of 0.1.
The viscosity of the gas has been fixed at 0.0001 while the inner fluid viscosity
has taken several values. This has been our parameter to variate as we have
left the surface-tension and the density both constant and equal to one in all the
simulations.

The numerical simulations have been performed for four different Ohne-
sorge’s numbers of order 10−3, 10−2, 10−1 and 1. As we were interested in large
timescale behavior, simulations took several hours and even days.

3.3 Results and discussion

The numerical results obtained by Gerris are shown in Figures 3.3 and 3.4 for
a set of four Ohnesorge’s number. They show the typical behavior expected: a
growing rim that recedes with a speed that tends to the Taylor-Culick velocity.
In fact, in our reference frame the rims tend to stay at rest as time grows. The
first two cases may confirm us this as we have reached long enough times to see
a stationary rim.

3.3.1 Neck formation and breakup

It is quite important to know for which Ohnesorge’s values we have necks. These
are regions where the thickness of the sheet has reduced by a purely hydrody-
namical effect. Song and Trygvasson in 1998[7] observed that a neck was formed
when the Ohnesorge’s number was smaller than Z ' 0.35,4. This is very near
with what we found in section 2.1.2 as critical value for neck formation Z ' 1/2.
In our simulations we tried with an Ohnesorge number between our prediction
and the observation of Song et al. and we didn’t have neck. However, it is very
risky to get any conclusion from the numerical simulations near the critical point
because the neck may be damped by the code or even become unresolvable to
the grid. On the other hand, our theoretical procedure has its own limitations
because the long-wave limit hypothesis is weakened as we approach the rim.

What happens when the Ohnesorge number is lowered? Effectively, tighter
necks are formed but this should be treated with care. In section 2.1.3 we found

4In fact, Song et al. found 0.25 but they defined the Ohnesorge number as Z/
√

2
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Figure 3.3: Numerical simulations for Z = 0.45 and Z = 0.045. In both cases
a drop-like structure develops at the edge of the fluid. In the former case the
function decays monotonically towards the unperturbed far regions, while in the
latter, small oscillations are present and a neck is formed.
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Figure 3.4: Numerical simulations for Z = 0.0045 and Z = 4.5. The situation
changes dramatically in the two cases. In the first one, a neck is formed but
subsequently the rim becomes unstable and turbulent. In the second one, the
evolution is extremely slow due to high viscosity.

that the parabolic envelopes of the travelling wave solutions were controlled by
the Ohnesorge number. As this is lowered, the slopes become more important
and the long-wave limit hypothesis is broken for very small Ohnesorge’s num-
bers. Moreover, there are more and more oscillations before reaching a uniform
decay region. These may become very steep breaking also the long-wave limit
hypothesis to the right of neck. The numerical simulations show that at the low-
est Ohnesorge’s number, a very tight neck is formed at the earlier stages but then
a turbulent behavior dominates. As this occurs very rapidly, the constant speed
hypothesis that we have used in section 2.1 fails and acceleration may become
important.

Is it possible to have breakup by purely hydrodynamical effects in a fluid
sheet as in the case of axisymmetrical jets? This cannot happen in 2-D fluid
sheets. The self-similar solutions in the axisymmetric jets are possible because of
the axial component of the curvature. Since this term does not exist in 2-D fluid
sheets, the behavior is quite different and the neck does not shrink to zero as time
passes and it converges quickly to a finite value. Song et al. suggested that the
breakup may be reached in the low Ohnesorge number limit. Their prediction
seems to be quite ambitious as we will have to deal with a complete turbulent
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problem far from the transition.

3.3.2 Several timescales

The studied problem is quite complicated as it seems to have different timescales
in the evolution of the shape of the sheet as it recedes. Figure 3.3 shows that prob-
ably three timescales exist in the problem. The first one is very short and deals
with the transition from the initial condition to a earlier type of self-similar-like
solution for the rim. This transition timescale seems to depend on Ohnesorge’s
number as viscosity opposes to rapid changes in the shape of the sheet.

Most of the stages plotted at Figure 3.3 are related with the second timescale.
This stage shall be already independent of the initial condition5. The pear-shape
of the self-similar-like rim in this stage is well defined. The rim is not circular
at all. It consists of a circular part but also of a straight line near the joint which
slope seems to be very close to

√
2 at least for the two Ohnesorge’s values shown

in Fig. 3.3 showing that it depends weakly on the parameter. This gives us the
hint that at this timescale, some kind of balance independent of viscosity domi-
nates. The candidates are inertia and surface tension for achieving this. It is also
remarkable that during this stage the neck accelerates in contrast with the final
timescale.

The last stage of evolution consists of a neck that asymptotically does not
move and a growing rim that effectively tends to a circle. The Gerris numerical
simulation for Z = 0.045 has just started to show this behavior at the final two
plots in Fig. 3.3. In effect, it can be seen that the neck has stabilized and now the
tip of the rim has started its motion to the opposite direction as consequence of
the growth of the rim.

Even we have not been able to see a rim that tends to a circle in our numerical
simulations because they took so long that we would have need some weeks for
achieving it, the results of Sünderhauf, Raszillier and Durst[8] shows that this
timescale does exist. They were able to reach non-dimensional times τ of order
103 where this stage is already well developed for Z ∼ 1. Their results seem to be
very similar to our theoretical results obtained in section 2.4. It would be very in-
teresting to see if this stage can be reached for other Ohnesorge values. However
this can be a very hard task as the timescale at which the stage is reached grows
dramatically (see the discussion in section 2.4). Even though, the lower limit, as
we have already seen, becomes turbulent so circular rims would not be seen at
all.

5Just the y-symmetry should be preserved.



Conclusions

We have studied the time-dependent problem of an initially stationary 2-D fluid
sheet that retracts by surface tension. The fluid was assumed to be viscous and
incompressible and the boundaries were assumed to be free surfaces with con-
stant surface tension.

The evolution of the shape of the sheet is characterized by a rim that accu-
mulates mass as it retracts. The rim recedes with a speed that tends to a constant
called the Taylor-Culick velocity. This speed can be found by momentum and
mass conservation equations for the rim.

The fluid motion is governed by the Navier-Stokes equation. The solutions
should be symmetrical in the y-axis. The whole problem is controlled by one di-
mensionless parameter called Ohnesorge’s number, which is a quotient between
viscous and surface tension forces.

In order to approach us to the solution, we have studied the behavior of
waves in an infinite uniform fluid sheet. Considering just varicose modes, we
have obtained a dispersion relation for them. All the modes are damped. How-
ever, it has been interesting to see that just some waves propagate. This is con-
trolled by the Ohnesorge number. In the long wavelength limit, this occurs if the
Ohnesorge number is smaller than 1/2. Moreover, we have determined numeri-
cally that if the Ohnesorge number is bigger than 0.716, the propagation does not
exist at all.

As an attempt to simplify the Navier-Stokes equations, we have used lubrica-
tion equations. These are an asymptotic limit of the Navier-Stokes equations for
long-wave perturbations. The problem then was reduced to set of two coupled
nonlinear equation that describes the motion of the sheet in terms of its thickness
and horizontal speed.

Using the lubrication equations adding a correction to the curvature to avoid
problems with the derivative divergency in the tip, we were able to find a whole
domain asymptotical solutions for long times by studying three different regions
in the sheet. The first region, far from the rim, behaves as stationary in a reference
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frame that translates with the Taylor-Culick velocity. We have shown that the
region may present oscillations: if Z > 1/2, the thickness of the sheet decays
monotonically, else oscillations are present.

As the rim accumulates mass, the length scales are lost and self-similar solu-
tions seem to well describe its behavior. Making an asymptotic expansion in time
of lubrication equations we have found circular solutions in the first order.

In order to match the self-similar rim with the stationary region far from the
rim, we had to look for an intermediate region. This region is also self-similar but
with different self-similar variables than the rim. Once this region was found,
we were able to construct a whole domain solution. When constructing it, very
strong constraints for the timescales have appeared for low as for high Ohne-
sorge’s numbers.

We have also performed numerical simulations of the complete Navier-Stokes
equations to verify our results. The simulations were done using Gerris, a code
whose special characteristic is the usage of quadtree data structures. The inter-
faces were treated with the volume of fluid technique. The code was run for a
wide range of Ohnesorge’s numbers, 10−3 to 10.

The numerical simulations agree with the predictions. The rims recede with
the asymptotically Taylor-Culick velocity. The Ohnesorge number controls the
rate at which this velocity is reached. It is quite remarkable also that when the
Ohnesorge number is lowered too much, turbulent behavior is observed in the
sheet.

Necks are formed if the Ohnesorge number is below a critical value. Even we
have not been able to measure this critical value to compare it with our theoret-
ical prediction, we had the observation made by Song et al., that this occurs at
Z ' 0.35. The result is quite near our prediction and it is likely underestimated
due to numerical simulations restrictions. The formation of a neck by purely
hydrodynamic effect and a possible breakup has been discussed.

The numerical simulations show that three timescales can be well observed
in the evolution of the shape of the sheet. The first one deals with the transition
from the initial condition to the second one, which is governed by a growing
self-similar rim but with an important acceleration still present at the neck. The
final stage, by contrast shows a stationary neck with a self-similar rim that tends
effectively to a circle. Our code was able to run fine within the first two stages
but the simulations take much so long that we were able to reach it hardly. Our
theoretical results were focused justly to the largest timescale, and we had not
enough data to make the comparison. However, using the results of Sünderhauf
et al., we were able to confirm that this timescale does exist and that our whole
domain solutions seem to quite fit their numerical solution at least for Z = 1.
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